• 제목/요약/키워드: Specific heat ratio

Search Result 206, Processing Time 0.025 seconds

신재생에너지원을 고려한 집단에너지 경제성평가 방법론에 관한 연구 (A Study on the Method about the Economic Feasibility Estimation Considering Renewable Energy)

  • 신혜경;최영준;최인선
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.372-374
    • /
    • 2008
  • Korea classified into a development country when UNFCCC was concluded in 1995. So Korea doesn't have a GHG reduction duty until 2012. As the UNFCCC is strengthened, recently there is a growing interest in renewable energy and energy usage efficiency improvement for reducing GHG emission. It is associated with CES and renewable energy. CES is a total energy (heat, cooling and power)supplier in aggregated demand zone like a hotel, building, hospital and redevelopment district using CHP and it improves energy usage efficiency. At present, renewable energy is needed for GHG reduction duty but renewable energy doesn't have economic feasibility. So renewable energy is needed various support system to popularize which is a FIT and RPS. Especially RPS is carrying out instead of FIT in many advanced country and it will be inroduced in Korea. RPS is a duty which electricity service provider must guarantee renewable energy as much as specific ratio of total capacity. Therefore this study conducts an economic feasibility estimation of CES considering renewable energy when RPS will introduced in the future.

  • PDF

Effect of Stagnation Temperature on the Supersonic Flow Parameters with Application for Air in Nozzles

  • Zebbiche, Toufik;Youbi, ZineEddine
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.13-26
    • /
    • 2006
  • When the stagnation temperature of a perfect gas increases, the specific heat for constant pressure and ratio of the specefic heats do not remain constant any more and start to vary with this temperature. The gas remains perfect: its state equation remains always valid, with exception that it will be named by calorically imperfect gas. The aim of this research is to develop the relations of the necessary thermodynamics and geometrical ratios. and to study the supersonic flow at high temperature. lower than the threshold of dissociation. The results are found by the resolution of nonlinear algebraic equations and integration of complex analytical functions where the exact calculation is impossible. The dichotomy method is used to solve the nonlinear equation. and the Simpson algorithm for the numerical integration of the found integrals. A condensation of the nodes is used. Since. the functions to be integrated have a high gradient at the extremity of the interval of integration. The comparison is made with the calorifcally perfect gas to determine the error made by this last. The application is made for the air in a supersonic nozzle.

초기 압력과 연료특성에 따른 마이크로 연소기 내에서의 연소 특성 및 소염 조건 변화 (Combustion Characteristics and Criterion of Quenching Condition in Micro Combustor Parameterized by Initial Pressure and Fuel in the Combustor)

  • 나한비;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.55-62
    • /
    • 2005
  • Combustion Characteristics and quenching criteria of micro combustor in various condition was exploited experimentally. Two different gases were used, and various geometric matrixes were considered to figure out quenching characteristic of micro combustor. The micro combustor studied in this study was constant volume, and has cylindrical shape. Geometric parameter of combustor was defined to be combustor height and diameter. The effect of height was exploited parametrically as 1 mm, 2mm and 3mm and the effect of diameter was parameterized to be 7.5mm and 15mm. Three different combustibles. (1) Stoichiometric mixture of methane and are, (2) Stoichiometric mixture of hydrogen and air and (3) Mixture of hydrogen and air with fuel stoichiometry of two were used. Pressure transition during combustion process was recovered. The ratio of maximum pressure to initial pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was observed only when a specific condition was satisfied. From the experiment the condition that guarantees stable propagation of flame was tabulated. The tabulated results includes criteria of quenching according to combustor height, combustor diameter, species of fuel and initial pressure.

공기 및 연료에 대한 배기가스 희석 방법에 의한 저 $NO_x$ 연소특성에 관한 실험 (Experiment on Low $NO_x$ Combustion Characteristics by Flue Gas Dilution In Air and Fuel Sides)

  • 조은성;정석호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1499-1504
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method used to control oxides of nitrogen ($NO_x$) in combustion system. The recirculated flue gases resulted in slow reaction and low flame temperatures, which in turn resulted in decreased thermal NO production. Recently, it has been demonstrated that introducing the recirculated flue gas in the fuel stream, that is, the fuel induced recirculation (FIR), resulted in a much greater reduction in $NO_x$ per unit mass of recirculated gas, as compared to introducing the flue gases in air. In the present study, the effect on $NO_x$ reduction in turbulent swirl flame in laboratory scale using FGR/FIR methods through the dilution using $N_2$ and $CO_2$. Results. show the $CO_2$ dilution is more effective $NO_x$ reduction methods because of large temperature drop due to the larger specific heat $CO_2$ compared to $N_2$. FIR is more effective to reduce $NO_x$ emission than FGR when the same recirculation ratio of dilution gas.

  • PDF

입자 특성에 따른 고체모터 플룸 이상유동 해석 (Two phase analysis of solid rocket motor plume as particle characteristics)

  • 김성룡;김인선
    • 항공우주기술
    • /
    • 제9권1호
    • /
    • pp.17-27
    • /
    • 2010
  • 알루미나 입자가 포함된 KSLV-I KM 고공 플룸 유동을 연소실에서 노즐 출구의 고공 팽창과정을 해석하였다. 알루미나 입자 및 플룸 가스의 물성치 및 분포를 달리하여 해석한 결과 연소가스 비열비를 1.2로 알루미나 입자의 직경 분포를 7가지로 가정하면 노즐 내부 유동 특성이 평형유동 해석 결과와 비교적 일치하였다. 입자의 팽창각은 가스유동보다 작으며 입자 직경이 클수록 팽창각은 더 작았다. 알루미나 입자의 광학 열물성을 변화시키며 KM TVC 분배기 위치의 복사열을 계산한 결과 알루미나 입자의 방사율이 0.1일 때 비행시험 결과와 비슷한 수준을 예측하였다.

디젤엔진에서 연료 분사시기가 아산화질소에 미치는 영향 (Effect of Fuel Injection Timing on Nitrous Oxide Emission from Diesel Engine)

  • 유동훈
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.106-112
    • /
    • 2014
  • The diesel engine, which has high compression ratio than other heat engines, has been using as the main power source of marine transport. Especially, since marine diesel engines offer better specific fuel consumption (SFC), it is environment-friendly compared to those used in other industries. However, attentio should be focused on emissions such as nitrous oxide ($N_2O$) which is generated from combustion of low-grade fuels. Because $N_2O$ in the atmosphere is very stable, the global warming potential (GWP) of $N_2O$ is 310 times as large as that of $CO_2$, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. It has been hitherto noted on the $N_2O$ exhaust characteristics from stationary power plants and land transportations, but reports on $N_2O$ emission from the marine diesel engine are very limited. In this experimental study, a author investigated $N_2O$ emission characteristics by using changed diesel fuel components of nitrogen and sulfur concentration, assessed on the factors which affect $N_2O$ generation in combustion. The experimental results showed that $N_2O$ emission exhibited increasement with increasing of sulfur concentration in fuel. However, all kinds of nitrogen component additives used in experiment could not change $N_2O$ emission.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

고탄소알코올/경유 혼합유를 이용한 디젤엔진 성능 특성 비교 (A Comparative Study on Diesel Engine Performance with Higher Alcohol-diesel Blends)

  • 권재성;양정현;김범수
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.767-772
    • /
    • 2023
  • In this study, combustion experiments were conducted at various engine speeds under full-load conditions using a single-cylinder diesel engine by blending butanol, pentanol, and octanol with diesel at a volume ratio of 10%. Experimental results revealed that higher alcohol-diesel blends resulted in lower brake torque and brake power than pure diesel due to the lower calorific value and the cooling effect during evaporation. An evident improvement in the brake thermal efficiency of the blended fuels was observed at engine speeds below 2,000 rpm, with the butanol blend exhibiting the highest thermal efficiency overall. Furthermore, the brake-specific fuel consumption of the higher alcohol-diesel blends was lower than that of pure diesel at speeds below 2,200 rpm. When using blended fuels, the exhaust gas temperature decreased under lean mixture conditions due to heat loss to the air and the cooling effect from fuel evaporation.

폐스티로폼의 가공 형태에 따른 기포콘크리트의 물리적 특성 변화 (Physical Properties of Foamed Concrete up In the Manufacturing Waste Expanded Poly-Styrene)

  • 오세출;서치호;신상태;지석원;김봉주
    • 콘크리트학회논문집
    • /
    • 제14권2호
    • /
    • pp.207-215
    • /
    • 2002
  • 본 연구는 기존 경량기포콘크리트의 문제점 및 역학적 성질의 개선을 위하여 산업폐기물인 폐스티로폼의 가공형태를 달리하여 기포콘크리트를 제조하고 그 역학적 특성의 변화를 구명해 봄으로써 현장타설 기포콘크리트의 효과적인 품질관리를 위한 자료를 제공하고, 현장 작업자에게 필요한 실험값을 제공하는 것을 목적으로 한다. 폐스티로폼은 지름이 3~5mm의 둥근형태를 유지한 것(Type A)과 1~2mm의 작게 파쇄한 것(Type B)을 사용하여 그 역학적 특성 변화를 고찰하였으며, 연구결과 Type A의 경우 흡수율의 개선과 경량성 및 단열성 향상에 유리한 것으로 나타났으며, Type B의 경우는 높은 압축강도를 나타내나 겉보기 비중이 증가하고 Type A에 비하여 플로우, 흡수율, 단열성에서 Type A보다 낮은 성능을 나타냈다. 그러나 이러한 결과로부터 폐스티로폼의 가공형태에 따른 것으로 폐스티로폼을 사용하지 않은 것보다는 적당량을 혼입하여 사용하는 것이 현장타설 기포콘크리트의 물리적 성능을 향상시키는데 효과적임을 알 수 있었다. 결과적으로 폐스티로폼을 사용하여 현장타설 기포콘크리트를 제조할 경우 산업폐기물의 재활용이라는 측면과 함께 보다 우수한 성능의 기포콘크리트 생산이 가능함을 확인하였다.

Chemical Activation Characteristics of Pitch-Based Carbon Fibers by KOH

  • Jang, Jeen-Seok;Lee, Young-Seak;Kim, In-Ki;Yim, Going
    • Carbon letters
    • /
    • 제1권2호
    • /
    • pp.69-75
    • /
    • 2000
  • Naphtha cracking bottom oil was reformed with heat treatment and then spun at $310^{\circ}C$. These pitch-based carbon fibers were carbonized at $1000^{\circ}C$ after oxidation at $280^{\circ}C$, for 90 min. These fibers were chemically activated with molar ratio of KOH/CF (1 : 1) at different temperatures ($250{\sim}900^{\circ}C$) for 1 hr. The process of activation was characterized with DTA, TGA, BET surface area and pore size distribution. The activation of fibers by KOH was performed by several process. One is the reduction process that carbon fiber was reacted with $K_2O$ produced from dehydration process above $400^{\circ}C$. The other is the process that $K_2CO_3$ was directly reacted with carbon fiber. At $800^{\circ}C$, the activation was performed by catalyzed mechanism that $K_2O$ was obtained from the reaction of metal potassium with $CO_2$, then was changed to $K_2CO_3$. At $870^{\circ}C$, the activation was also observed that activation mechanism was promoted by metal catalyst with $CO_2$ from decomposition of $K_2CO_3$. The specific surface area of prepared activated carbon fibers was dependent on the activation mechanism. The specific surface area was in the range of $1519{\sim}2000\;cm^3/g$ and was the largest prepared at $870^{\circ}C$. The pores developed were mostly micropores which was very narrow and uniform. The total pore volume was $0.58{\sim}0.77\;cm^3/g$.

  • PDF