• Title/Summary/Keyword: Specific fuel consumption

Search Result 297, Processing Time 0.027 seconds

A Study on Emissions and Catalytic Conversion Efficiency Characteristics of an Electronic Control Engine Using Ethanol Blended Gasoline as Fuels

  • Cho Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.722-728
    • /
    • 2005
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiency characteristics were investigated in a multiple-point EFI gasoline engine, The results show that with the increase of ethanol concentration in the blended fuels, THC emissions were drastically reduced by up to thirty percent, And brake specific fuel consumption was increased, but brake specific energy consumption could be improved. However, unburned ethanol and acetaldehyde emissions increased. Pt/Rh based three-way catalysts were effective to reduce acetaldehyde emissions, but had low catalytic conversion efficiency for unburned ethanol. The effect of ethanol on CO and NOx emissions and their catalytic conversion efficiency had close relation to the engine's speed, load and air/fuel ratio. Furthermore fuels blended with thirty percent ethanol by volume could dramatically reduced THC CO and NOx emissions at idle speed.

A Study on the Performance of the MPI Gasoline Engine with Gasoline-Ethanol Blends (가솔린-에탄을 혼합연료 사용시의 MPI 가솔린 기관의 성능에 관한 연구)

  • 윤건식;신승한
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.92-102
    • /
    • 2001
  • The effect of ethanol-blending on the performances of the MPI gasoline engine was examined. The experiments were carried out for the stoichiometric conditions under MBT spark timing over various operating conditions. The blending rate of ethanol were determined as 10 to 30 percent according to the analysis of the properties of blended fuels. The engine with ethanol-blended fuels showed improved performances such as brake torque, brake power, brake thermal efficiency and exhaust emissions compared with those of pure gasoline over most operating conditions. Though the brake specific fuel consumption was increased by ethanol-blending due to their lower heating values, the increasing rates of the brake specific fuel consumption were limited to the half of the blending rates owing to the increase in the thermal efficiency.

  • PDF

A STUDY ON THE PERFORMANCE AND EMISSIONS CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH ETHANOL GASOLINE BLENDED FUEL

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.170-174
    • /
    • 2014
  • This paper presents the influences of ethanol addition to gasoline on bench test a spark ignition engine performances and emissions characteristics. The use of ethanol gasoline blended fuels decrease the brake power and brake torque, and increases the brake specific fuel consumption (BSFC). Ethanol gasoline blended fuels show lower brake torque and brake power and higher BSFC than gasoline. When ethanol containing oxygen is blended with gasoline, the combustion of the engine becomes better and therefore CO emission is reduced. HC emissions decrease to some extent as ethanol added to gasoline increase, as the percentage of ethanol in the blends increased, NOx emission was decreased under various engine speeds.

Effects of Distribution of Axle Load and Inflation Pressure of Tires on Fuel Efficiency of Tractor Operations (차축의 중량 분포와 타이어의 공기압이 트랙터 작업의 연료 효율에 미치는 영향)

  • Lee, Jin-Woong;Kim, Kyeong-Uk;Gim, Dong-Hyeon;Choi, Kyu-Jeong
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.303-313
    • /
    • 2011
  • This study was conducted to investigate the effects of axle weight distribution and inflation pressure of tire on the fuel economy of tractors as well as operational range of tractor engine in terms of engine speed and power when a 4WD tractor of 38.2 kW rated power at 2500 rpm is used for plowing and flooded-field rotavating in paddy fields. (1) Plowing operation required an average engine power of 9.6~13.5 kW which equals 25~35% of rated PTO power. Engine speed ranged from 1,320.4 to 1,737.4 rpm, work velocity from 3.4 to 4.8 km/h, and fuel consumption from 3.2 to 4.2 L/h, respectively. (2) Flooded-field rotavating required an average engine power of 11.5~18.5 kW which equals 30~48.4% of rated PTO power. Out of this 6.2~12.2 kW was used for PTO power. Engine speed ranged from 1,557 to 2,067 rpm, work velocity from 2.5~5.4 km/h and fuel consumption from 3.2~5.5 L/h, respectively. (3) Axle weight distribution, inflation pressure of tire and moisture content of soil did not affect significantly the specific volumetric fuel consumption but affected significantly the fuel consumption per unit area of operation. Fuel savings amounted to 65% in plowing operation and 20% in flooded-field rotavating when the axle weight distribution and inflation pressure of tire were optimally adjusted. (4) Optimal adjustment of axle weight distribution and inflation pressure of tire are expected to save fuel consumption by 10~65% per unit area of operation in plowing and 10~20% in flooded-field rotavating.

Application of Main Engine Turbocharger Cut-Out System Onboard a Vessel (Main Engine Turbocharger Cut-Out System 실선 적용 사례)

  • Cho, In-Young;Lee, Dong-Yeub;Kim, Young-Keon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.36-38
    • /
    • 2011
  • As the increase of the fuel oil price, the demand for saving of the ship running cost is growing. To meet the needs of the shipowners, the method for low load operation has been developed by engine licenser. As one of low load operation, the turbocharger cut-out system can be utilized flexibly both full and part load operation. It can be possible to optimize fuel consumption at both full and part load operation. Tests by engine licenser with 12K98MC engine have proven that the fuel oil consumption can be reduced approximately 5%. In this paper we will study the application of main engine turbocharger cut-out system onboard a vessel. One of four turbochargers with MAN Diesel & Turbo 12K98MC-C and 12K98ME-C engine is cut out with swing gate valve. The fuel oil consumption is measured during sea trial and engine shop test.

  • PDF

A Study on Idle Performance Improvements for a Gasoline Engine with the Syngas Assist (합성가스를 이용한 가솔린엔진 아이들 성능 개선에 관한 연구)

  • Song, Chun-Sub;Kim, Chang-Gi;Kang, Kern-Young;Cho, Young-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.245-251
    • /
    • 2005
  • Recently, fuel reforming technology for the fuel cell vehicle has been applied to internal combustion engines, with various purpose. Syngas which is reformed from fossil fuel has hydrogen as a major component. It has better effort in combustion characteristics such as wide flammability and hig speed flame propagation. In this study, syngas was added to a gasoline engine for the improvement of combustion stability and exhaust emission in idle state. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to extend lean operation limit and ignition retard range. with dramatical reduction of engine out emissions.

  • PDF

A Study on the Ship's Speed for Reducing the Fuel Oil Consumption in Actual Ships (선박의 연료소모량 절감을 위한 항해 속력에 관한 연구)

  • Kim, Soon-Kap;Lee, Yun-Sok;Kong, Gil-Young;Kim, Jong-Pil;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • Recently, due to the rapid rise of the international oil price, the burden of fuel oil expense is relatively increasing in a ship. And the international restriction of the greenhouse gas which was generated from the burning of fuel oil is also rapidly strengthened. Therefore, to reduce the greenhouse gas and fuel oil consumption, many shipping company adopted the low speed navigation and it was focused on the improvement of fuel consumption efficiency and the usage of alternative energy in the marine engine development field. In this paper, the fuel oil consumption according to the ship's speed was measured in the actual seas and analyzed the shop test results in the shipyard and the ship navigation data from the abstract log. And then it was proposed that the ship's economic speed was 14~15kts and the optimum rpm was 140~150 in specific sea conditions.

A Study on Application of On/Off Type EGR and Optimal EGR Rate for Gasoline-Hybrid Engine (하이브리드용 가솔린 엔진에서 On/Off 방식 EGR적용 및 최적 EGR 율에 관한 연구)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.143-150
    • /
    • 2008
  • EGR(exhaust gas recirculation) is an attractive means of improving the fuel economy of spark ignition engines, as it offers the benefits of charge dilution (lower pumping and cooling losses) while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in Gasoline-Hybrid engine should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel economy, combustion stability, engine performance and exhaust emissions. EGR tolerance with load variation was found to be more sensitive than with rpm variation. With optimal EGR rates, the fuel consumption was improved by 5.5% while a combustion stability was guaranteed.

A Study on the Heat Rejection to Coolant in a Gasoline Engine (가솔린 엔진에서의 냉각수로의 전열량에 대한 연구)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.77-88
    • /
    • 1997
  • The heat rejection to coolant is a dominant factor for building vehicle cooling system such as radiator and cooling fan. Since the vehicle cooling system also has effects on fuel consumption and noise, the study of heat rejection to coolant has been emphasized. However, the study on heat rejection to coolant has been mainly focused on the field that related to the characteristics of combustion and localized heat loss. It is no much of use in design for the entire cooling system because it is focused on such a specific point. In this work, the heat rejection rate to coolant for four different engines are obtained to derive a simple heat transfer empirical formula that can be applied to the engine cooling system design, and it is compared with the other studies. Also, to observe effects of engine operation factors and heat transfer factors on coolant, we measured the metal temperature and the heat rejection rate. The heat rejection to coolant does not depend significantly upon the coolant flowrate, but mainly upon the amount of air fuel mixture and the air fuel ratio as long as the composition of coolant does not change. The reduction of heat rejection to coolant did not effectively improve the fuel consumption, but was mostly converted to raise the exhaust gas temperature and the oil temperature.

  • PDF

A Study on the Improvements of Idle Performance for a SI Engine with a Syngas Assist (합성가스를 이용한 SI엔진의 아이들 성능 개선에 관한 연구)

  • Kim, Chang-Gi;Song, Chun-Sub;Cho, Young-Seok;Kang, Kern-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2006
  • In this study, syngas which is reformed from fossil fuel and has hydrogen as a major component, was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction of the total supplied fuel varied to 0 %, 25 %, 50 % with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions. It is supposed that the usage of syngas in the internal combustion engine is an effective solution to meet the future strict emission regulations.

  • PDF