• 제목/요약/키워드: Specific emissions

검색결과 334건 처리시간 0.036초

IPCC 온실가스 산정지침 변화에 따른 농촌지역 벼 재배부문 배출량 및 배출특성 분석 (Analysis of Changing for GHG Emissions and Regional Characteristics on Rice Cultivation by IPCC Guideline Improvements)

  • 박진선;정찬훈;정현철;김건엽;이종식;서교
    • 농촌계획
    • /
    • 제23권2호
    • /
    • pp.75-86
    • /
    • 2017
  • IPCC Guidelines have been updated after the first official announcement to get more precise estimation of GHG emissions. The goal of this study is to evaluate the implications of the IPCC Guidelines improvements including equations of country-specific parameter values for estimating GHG emissions for rice cultivation on the agricultural sector. In addition, we analyze the effects of emission factors associated with organic amendment applications. The results of this study are as follows; (1) the total GHG emissions of rice cultivation based on 1996 IPCC GL are 28% lower than those estimated by 2006 IPCC GL with the same year data; (2) GHGs can be reduced up to 60% through the assumption of organic fertilizer applications; (3) Jeonnam and Chungnam are the worst regions for GHG emissions on rice cultivation and Chungbuk shows the highest reduction rate of GHG emissions, about 40%.

지자체 도로이동오염원 배출량 산정 방안 (A Methodology for Estimation of Vehicle emissions in a Metropolitan Area)

  • 한진석
    • 환경정책연구
    • /
    • 제14권3호
    • /
    • pp.3-19
    • /
    • 2015
  • 지자체 단위의 도로이동오염원 배출량을 보다 현실적으로 산정하기 위하여 배출량 산정 시 기초자료인 차량 등록대수를 보정하는 방안을 검토하였다. 국가교통DB를 이용하여 수도권 지역의 특정 차종(RV, 승합차, 버스, 화물차)에 대한 차량 등록대수를 보정한 결과, 지역별로는 서울의 오차율이 가장 크고 차종별로는 버스와 화물차의 오차율이 큰 것으로 나타났다. 또한, 배출량 산정에 영향을 미치는 기존 등록대수와 보정 등록대수 편차의 절대값은 수도권 지자체 모두 화물차가 가장 큰 것으로 나타났다. 배출량 산정 결과, 기존 등록대수 기반의 배출량과 보정 등록대수 기반의 배출량의 차이는 약 9%로 나타났으며, 수도권 지자체 중에서는 인천의 배출량 오차율이 가장 큰 것으로 나타났다.

  • PDF

Catalytic Combustion for the Gas Turbine a Review of Research at Cranfield University

  • Witton, J.J.
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.309-328
    • /
    • 2003
  • Catalytic combustion is the cleanest emissions technology that has been demonstrated for the gas turbine. It has been a primary part of the research portfolio for the Combustor and Heat Transfer Technology Group at Cranfield University since 1989. The Paper describes the background to studies in the Group, their evolution and presents some results for specific study areas and themes.

  • PDF

철도디젤차량에서 배출되는 오염물질의 배출량 산정방법 개발 (Development of Estimation Methods of Pollutant Emissions from Railroad Diesel Rolling Stocks)

  • 박덕신;김동술
    • 한국대기환경학회지
    • /
    • 제20권4호
    • /
    • pp.539-553
    • /
    • 2004
  • Up to the present time, many methods to estimate emissions from a particular diesel engines have wholly depended on the quantity of diesel fuel consumed. Then, the recommended emission factors were normalized by fuel consumption, and further total activity was estimated by the total fuel consumed. One of main purposes in the study is newly to develop emission factors for the railroad diesel rolling stock (RDRS) and to estimate a total amount of major gaseous pollutants from the RDRS in Korea. Prior to develop a Korean mode emission factor. the emission factor from the USEPA was simply applied for comparative studies. When applying the USEPA emission factors, total exhaust emissions from the RDRS in Korea were estimated by 28,117tons of NOx, 2,832.3tons of CO, and 1,237.5tons of HC, etc in 2001. In this study, a emission factor for the RDRS, so called the KoRail mode (the Korean Railroad mode) has been developed on the basis of analyzing the driving pattern of the Gyeongbu-Line especially for the line-haul mode. Explicitly to make the site specific emission factors, many uncertainty problems concerning weighting factors for each power mode, limited emission test, incomplete data for RDRS, and other important input parameters were extensively examined. Total exhaust emissions by KoRail mode in Korea were estimated by 10,960tons of NOx, and 4,622tons of CO, and so on in the year of 2001. The emissions estimated by the USEPA mode were 2.6 times higher for NOx, and 1.6 times lower for CO than those by the KoRail mode. As a conclusion, based on the emission calculated from both the USEPA mode and the KoRail mode, the RDRS is considered as one of the significant mobile sources for major gaseous pollutants and thus management plans an(1 control strategies for the RDRS must be established to improve air quality near future in Korea.

1990년부터 2013년까지 농업 분야 국가 온실가스 배출량 평가 - 경종부문 중심으로 - (Estimation of National Greenhouse Gas Emissions in Agricultural Sector from 1990 to 2013 - Focusing on the Crop Cultivation -)

  • 최은정;정현철;김건엽;이선일;이종식
    • 한국기후변화학회지
    • /
    • 제7권4호
    • /
    • pp.443-450
    • /
    • 2016
  • The major greenhouse gases (GHGs) in agricultural sector are methane ($CH_4$), nitrous oxide ($N_2O$), carbon dioxide ($CO_2$). GHGs emissions are estimated by pertinent source category in a guideline book from Intergovernmental Panel on Climate Change (IPCC) such as methane from rice paddy, nitrous oxide from agricultural soil and crop residue burning. The methods for estimation GHGs emissions in agricultural sector are based on 1996 and 2006 IPCC guideline, 2000 and 2003 Good Practice Guidance. In general, GHG emissions were calculated by multiplying the activity data by emission factor. The total GHGs emission is $10,863Gg\;CO_2-eq$. from crop cultivation in agricultural sector in 2013. The emission is divided by the ratio of greenhouse gases that methane and nitrous oxide are 64% and 34%, respectively. Each gas emission according to the source categories is $7,000Gg\;CO_2-eq$. from rice paddy field, $3,897Gg\;CO_2-eq$. from agricultural soil, and $21Gg\;CO_2-eq$. from field burning, respectively. The GHGs emission in agricultural sector had been gradually decreased from 1990 to 2013 because of the reduction of cultivation. In order to compare with indirect emissions from agricultural soil, each emission was calculated using IPCC default factors (D) and country specific emission factors (CS). Nitrous oxide emission by CS applied in indirect emission, as nitrogen leaching and run off, was lower about 50% than that by D.

Addressing the concept of Methane and Carbon emissions by wetlands and the Status of Wetlands India: A Review

  • Farheen, Kaggalu Shaista;Kim, Lee-Hyung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.462-462
    • /
    • 2022
  • Wetlands are one of the most vital natural habitats on the planet. India is incredibly blessed to have a number of multifunctional wetland ecosystems. Wetlands, in addition to their functional importance, can act as sources or sinks for greenhouse gases (GHGs) depending on their intrinsic factors. Carbon (CO2) and Methane (CH4) are the major greenhouse gases (GHG's) emitted in wetlands. It is demonstrated that, despite having 4.6 percent of its area covered by natural or man-made wetlands, being home to a large number of wetlands, and being the world's second largest cultivator of paddy, India's wetlands, including paddy fields that are intermittently flooded as typical wetlands, have been very poorly studied in terms of GHG emissions. The purpose of this paper is to examine the status of Indian wetlands and wetlands in terms of CH4 and CO2 emissions. The present study also reviews various literature to provide the equations, parameters that are required for estimating carbon and methane and some of the best strategies for conserving carbon in wetlands. The findings suggest that both non-manipulative and manipulative measures can be used to improve Carbon Sequestration (CS). Non-manipulative measures aim to improve CS by increasing the spatial extent of wetlands, whereas manipulative measures aim to change the characteristics of specific wetland components that influence CS. Uncertainty in carbon dynamics projections under changing environmental conditions is caused by a number of Knowledge gaps: i) There is a lack of knowledge on how organic matter mineralizes and partitions into carbon dioxide, methane, and dissolved organic carbon, ii) With the notable exception of methane dynamics, models that represent the dynamic interaction of processes and their controls have yet to be established. As a result, more research is needed to fully understand the importance of wetlands in terms of GHG emissions and carbon sequestration in India.

  • PDF

직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향;유채유를 중심으로 (Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DJ Diesel Engine;Using Rape Oil)

  • 임재근;최순열;조상곤
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2007년도 추계학술발표회
    • /
    • pp.133-137
    • /
    • 2007
  • An experimental study is conducted to evaluate and compare the use of BiodieseDI Fuel supplements at blend ratio of 10/90(BDF10) and 20/80(BDF20), in four stroke, direct injection diesel engine located at the authors' laboratory. especially this Biodiesel is produced from Rape oil at the authors' laboratory. The tests are conducted using each of the above fuel blends, in the engine working at a speed of 1800rpm and at a various loads. In each test, specific fuel consumption, exhaust emissions such as nitrogen oxides(NOx), carbon monoxide(CO) and Soot are measured. The results of investigation at various operating conditions are as follows (1) Specific fuel consumption is increased average 1.52%, maximum 1.84% at load 25% in case of BDF10, and average 1.98%, maximum 2.80% at load 25% in case of BDF20. (2) CO emission is decreased average 5.14%, maximum 6.09% at load 0% in case of BDF10, and average 7.75%, maximum 9.13% at load 0% in case of BDF 20. (3) NOx emission is increased average 2.97%, maximum 3.74% at load 0% in case of BDF10, and average 3.84%, maximum 4.67% at load 0% in case of BDF20. (4) Soot emission is decreased average 9.36%, maximum 10.85% at load 75% in case of BDF10, and average 11.99%, maximum 13.95% at load 75% in case of BDF20.

  • PDF

CO2를 포함한 Simulated-EGR 압축착화엔진에서 당량비 변화에 따른 성능 예측 (Performance Prediction according to Equivalence Ratio Change in Simulated-EGR Compression Ignition Engine Containing CO2)

  • 서현규
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.21-26
    • /
    • 2020
  • The objective of this work is to numerically reveal the effect of equivalence ratio change on the simultaneous reduction of NOX and soot emissions from the simulated-EGR compression ignition engine containing CO2. An experiment was conducted by using a single-cylinder common-rail injection system engine, an intake control system, and exhaust emissions analyzers. The numerical analysis results were validated under the same experimental conditions. To investigate the effect of equivalence ratio by simulated-EGR containing CO2, the O2, N2, and CO2 mole fraction were changed in the initial air conditions to the cylinder. The results were analyzed in terms of peak cylinder pressure, indicated mean effective pressure, indicated specific nitrogen oxide, and indicated specific soot. It was revealed that ignition delay characteristics and heat release rate (ROHR) characteristics were not significantly different according to the equivalence ratio. However, as the equivalence ratio increased from 0.68 to 0.83, the maximum combustion pressure and IMEP decreased by about 6.5% and 9.4%, respectively. In the case of ISFC, as is well known, the trend is opposite of IMEP. In the case of ISNO, as the equivalence ratio increased, less NO was generated, and as the equivalence ratio increased by 0.05, the ISSoot value of about 10% increased.

디젤 기관의 연소와 배출물에 관한 연구 -경유-물물의 유화연료 사용시- (A Study on Combustion And Exhaust Emissions of Diesel Engine -For Gas Oil-Water Emulsified Fuel-)

  • 조진호;김형섭;박정률
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.180-188
    • /
    • 1992
  • 본 연구에서는 와류실식 디젤 기관에 경유-물의 유화연료 사용시 시관의 회전 속도(1500rpm)가 일정인 경우 물의 첨가량(체적비, 0~20%)과 기관의 부하(BMEP,2.1~ 7.5kg/$\textrm{cm}^2$)변화에 따른 연소실내 압력, 압력상승률 및 열발생률, 착화지연 기간, 연료 소비율 등의 연소특성과 CO, HC, NOx 및 매연의 배출능도 등 유해 배출 가스에 미치는 영향에 관하여 실험적으로 구한 것이다.

Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향 (Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF