• Title/Summary/Keyword: Specific emissions

Search Result 334, Processing Time 0.033 seconds

A Comparison of the Changes of Greenhouse Gas Emissions to the Develop Country-Specific Emission Factors and Scaling Factors in Agricultural Sector (농업부문 국가 고유 배출계수와 보정계수 개발에 따른 온실가스 배출량 변화 비교)

  • Jeong, Hyun Cheol;Lee, Jong Sik;Choi, Eun Jung;Kim, Gun Yeob;Seo, Sang Uk;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.349-357
    • /
    • 2014
  • Greenhouse gases (GHGs) from agricultural sector were categorized in a guideline book from Intergovernmental Panel on Climate Change (IPCC) as methane from rice paddy fields and nitrous oxide from agricultural soils. In general, GHG emissions were calculated by multiplying the activity data by emission factor. Tier 1 methodology uses IPCC default factors and Tier 2 uses country specific emission factors (CS). The CS and Scaling factors (SF) had been developed by NAAS (National Academy of Agricultural Science) projects from 2009 to 2012 to estimate how the advanced emissions. The purpose of this study was to compare GHG emissions calculated from IPCC default factors and NAAS CS and SF of agricultural sector in Korea. Methane emissions using CS and SF in rice paddy field was about 79% higher than those using IPCC default factors. In the agricultural soils, nitrous oxide emissions using CS from the 5 crops were about 40% lower than those using IPCC default. Except those 5 crops, approximately up to 52% lower emissions were calculated using CS compared to those using IPCC default factors. The total GHG emissions using CS and SF were about 33% higher than those using Tier 1 method by IPCC default factors.

The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine (직분식 소형 과급 디젤엔진에서 EGR이 배기배출물에 미치는 영향)

  • Jang, Se-Ho;Koh, Dae-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.188-194
    • /
    • 2005
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments were performed at various engine loads while the EGR rates were set from $0\%$ to $30\%.$ The emissions trade-off and combustion of diesel engine are investigated. The brake specific fuel consumption rate is very slightly fluctuated with EGR in the range of experimental conditions. The ignition delay increased with increasing EGR rate. The maximum value of premixed combustion for the rate of heat release is increased with increasing EGR rate. NOx emissions are decreased with increasing EGR rate at high load and high speed. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions.

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Marine Diesel Engine (선박용 디젤기관의 연료분사 시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.307-312
    • /
    • 2002
  • A study on the exhaust emissions of marine diesel engine with various fuel injection timing is performed experimentally .In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 0% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx, HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) NOx emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Diesel Engine (디젤기관의 연료분사시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.50-56
    • /
    • 2001
  • A study on the exhaust emissions of diesel engine with various fuel injection timing is peformed experimentally. In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 25% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx. HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) $NO_x$ emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

  • PDF

Effect of Operation Condition on the Characteristics of Combustion and Exhaust Emissions in a Gasoline Fueled HCCI Diesel Engine (가솔린 균일 예혼합 압축 착화 디젤기관의 연소 및 배기 특성에 미치는 운전조건의 영향)

  • 이창식;김명윤;황석준;김대식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • The purpose of this work is to investigate the effect of premixing condition on the combustion and exhaust emission characteristics in a HCCI diesel engine. To from homogeneous charge before intake manifold, the premixed gasoline fuel is injected into a premixed tank by fuel injection system and the premixed gasoline fuel is ignited by direct injected diesel fuel. Experimental result shows the NOx and soot emissions are decreased linearly with the increase of premixed ratio. In the case of intake air temperature $20^{\circ}C$ with light load, the specific fuel consumptions are increased with the rise of premixed ratio and HC and CO emissions are also increased. But the intake air heating can improve the specific fuel consumption at light load condition because increased air temperature promotes the combustion of premixed mixture. In the case of high intake air temperature with high load condition, premixed fuel is auto-ignited before diesel combustion and soot emission is increased.

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

Estimation of the Energy Saving Potential using Energy Bandwidth Analysis in Manufacturing Plant (에너지 대역분석 기법을 이용한 생산플랜트에서 에너지절감 잠재량 산정)

  • Park, Hyung-Joon;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.236-240
    • /
    • 2011
  • Currently one of the most importance issues in industrial sector is energy cost and energy efficiency. The manufacturing plants especially have made many efforts to reduce energy cost by implementing maintenances. But in many cases, they are not aware that how much energy could be saved more. If we know the best energy consumption, which signifies energy baseline, we can control the intensity of maintenances. One way to obtain the baseline is using proper statistics from a specific plant, a sector of industry. Energy bandwidth signifies the gap between actual Specific Energy Consumption(SEC) of a certain plant and minimum SEC of the best plant, and estimate energy saving potential(ESP) is a result of bandwidth analysis. We chose a model plant and implemented some maintenance for a year, and then we obtained ESP. Additionally we could determine the decreased amount of carbon emissions from the plant using Carbon Emissions Factor(CEF) by Intergovernmental Panel on Climate Change(IPCC).

Measurement of greenhouse gas emissions from a dairy cattle barn in Korea

  • Eska Nugrahaeningtyas;So-Hee Jeong;Eliza Novianty;Mohammad Ataallahi;Geun Woo Park;Kyu-Hyun Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.459-472
    • /
    • 2023
  • Korea is currently developing country-specific emission factors to support the 2050 zero-carbon campaign. Dairy cattle represent one of the largest livestock industries in Korea, and the industry is estimated to continue increasing because of an increase in milk demand. However, country-specific emission factors for dairy cattle are currently only available for calculating methane (CH4) emissions from enteric fermentation. Two experiments were conducted to evaluate CH4 and nitrous oxide (N2O) fluxes from sawdust-bedded barn in dairy cow and steer, as well as dairy cattle manure composting lots. The greenhouse gas (GHG) fluxes were quantified using the open-chamber method and gas chromatography. CH4 fluxes from steer, dairy cow, and manure compost were 27.88 ± 5.84, 36.12 ± 10.85, and 259.44 ± 61.78 ㎍/head/s, respectively. N2O fluxes from steer, dairy cow, and manure compost were 14.04 ± 1.27, 4.11 ± 1.57, and 3.97 ± 1.08 ㎍/head/s, respectively. The result of this study can be used to construct country-specific data for GHG emissions from manure management. Thus, the application of mitigation strategies can be prioritized based on the GHG profile and targeted source.

A Study on Efficient Methods of Using Land Engine in the Small Fishing Vessel (소형 어선에서 육상용기관의 효율적인 이용방법에 대한 연구)

  • Lim, J.K.;Cho, S.G.;Hwang, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2005
  • A study on the performance and exhaust emissions of diesel engine with reducing exhaust gas temperature is performed experimentally. In this paper, experiments are performed at engine speed 2200rpm, 2600rpm and load 0%, 25%, 50%, 75% and 100% by test engine with F.W. cooler passing through exhaust gas. Main measured & analyzed parameters are exhaust gas temperature, specific fuel consumption, NOx and soot emissions etc. The obtained conclusions are as follows. (1) Specific fuel consumption is the least value at load 75% and it is decreased 1.5% after remodeling F.W. cooler. (2) NOx emission is the most value at load 100% and it is increased 30.1% after remodeling F.W. cooler. (3) Soot emission is the most value at load 100% and it is decreased 20.0% after remodeling F.W. cooler.

  • PDF

Exhaust Emissions Characteristics of an Agricultural Diesel Engine with Improved Rice Bran Oil Fuels (개선 미강유 연소에 의한 농용 디젤기관의 배기 배출물 특성)

  • 배명환;하정호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.55-60
    • /
    • 2000
  • The effects of improved rice bran oil on the characteristics of exhaust emissions have been experimentally examined by a single cylinder, four cycle, direct injection, water-cooled and agricultural diesel engine operating at several loads and speeds. The experiments are conducted with light oil rice bran oil, and improved rice bran oil as a fuel. The fuel injection timing is fixed to 22$^{\circ}$BTDC regardless of fuel type, engine loads and speeds. To reduce the viscosity of rice bran oil, it is used with the methods of heating, methyl ester and ultrasonic system in a highly viscous rice bran oil. In this study, it is found that the brake specific fuel consumption rate of light oil is the lowest and that of improved rice bran oil is lower than that of pure rice bran oil, and NOx emissions of light oil are the lowest and those of pure rice bran oil are the highest, but soot emissions of light oil are the highest. However these results are not amply satisfied with the emissions regulation limit using the pure and improved rice bran oil as a fuel in diesel engines.

  • PDF