• Title/Summary/Keyword: Specific cutting force

Search Result 114, Processing Time 0.027 seconds

Analyses of structural dynamic characteristics and end milling in a vertical machining center (금형 가공기의 엔드밀 가공 및 구조 동특성 해석)

  • 이신영;김성걸;이장무
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.66-74
    • /
    • 1997
  • In a high speed and high precision vertical machining center, chatter vibration is easily generated due to unbalanced masses in rotating parts and changtes of cutting forces. In this paper, modal test is performed to obtain modal parameters of the vertical machining center. In order to predit the cutting force of endmilling process for various cutting conditions, a mathematical model is given and this model is based on chip load, cutting geometry, and relationship between cutting forces and the chip load. Specific cutting constants of the model are obtained by averaging forces of cutting tests. The interactions between the dy- namic characteristics and cutting dynamics of the vertical machining center make the primary and the secondary feedback loops, and we make use of the equations of system to predict the chatter vibration. The chatter prediction is formulated as linear differential-differene equations, and simulated for several cases. Trends of vibration as radial and axial depths of cut are changed are shown and compared.

  • PDF

Study on the Analytical Prediction of Premier Chipping in Involute Gear Cutting Process (인볼류우트 커터인선의 초기결손 예측에 관한 연구)

  • 김재갑;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1266-1277
    • /
    • 1992
  • In the machining processes, the tool chipping are known to be the most dangerous when the variation of end of tool edges is largest. Therefore, chipping has been caused by the stress distribution in the moment of cutting. In this study, in order to predict the shapes of tool chipping with the tool shapes and the cutting conditions, the premier chipping shapes of involute cutter iss predicted by the stress distribution value of cutting edges and it is verified by the experiments. The growth behavior of the tool chipping is considered through the experiment of gear cutting and in case of evaluation of specific cutting energy in the proper machining conditions through the simulation result, it can be known that the prediction of cutting force is possible accurately.

Study on the Development and Property of Epoxy Putty with Excellent Low Shrinkage and Cutting Force Using Mercaptan Type and Diamine Type (Mercaptan계와 Diamine계를 이용한 저수축·절삭력이 우수한 Epoxy Putty의 개발 및 물성에 관한 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.137-145
    • /
    • 2015
  • This study aimed to develop epoxy putty as a multi-purpose connection and restoration material that can be used for material-specific restoration work such as metal, wood, ceramics, earthenware and stone artifacts by replacing synthetic resins currently being used for preservation treatment of cultural assets. Existing synthetic resins have the issue of cutting force resulting from high strength, deflection resulting from long hardening time, contaminating the surface of artifacts through staining on tools or gloves and need for re-treatment resulting from material discoloration. Accordingly, paste type restoration material most widely being used in the field of cultural assets preservation treatment was selected and examined the property to select it as an object of comparison. Based on such process, epoxy putty was developed according to the kind of agent, hardener and filler. For the purpose of solving the issues of existing material and allowing the epoxy putty developed to have similar property, property experiments were conducted by selecting agents and hardeners with different characteristics and conditions. The study findings showed that both kinds are paste type that improved work convenience and deflection issue as a result of their work time of within 5~10 minutes that are about 3~10 times shorter than that of existing material. In regards to wear rate for increasing cutting force, it improved by about 3 times, thereby allowing easy molding. For the purpose of improving the issue of surface contamination that occurs during work process, talc and micro-ballon were added as filler to reduce the issue of stickiness and staining on hand. Furthermore, a multi-purpose restoration material with low shrinkage, low discoloration and high cutting force was developed with excellent coloring, lightweight and cutting force features.

Identification of Cutting Mechanisms in Orthogonal Cutting of Glass Fiber Reinforced Composites

  • Choe Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.39-45
    • /
    • 2000
  • In recent years, composite materials such as fiber reinforced plastics (FRP) have gained considerable attention in the aircraft and automobile industries due to their light weight, high modulus and specific strength. In practice, control of chip formation appears to be the most serious problem since chip formation mechanism in composite machining has significant effects on the finished surface [1,2,3,4,5]. Current study will discuss frequency analysis based on autoregressive (AR) time series model and process characterization in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the different chip formation mechanisms and model coefficients are established.(omitted)

  • PDF

Cutting Characteristics on Rake Angle in Laser-Assisted Machining of Silicon Nitride (질화규소의 예열선삭가공시 경사각에 따른 절삭특성)

  • Shin, Dong-Sig;Lee, Jae-Hoon;Lim, Se-Hwan;Kim, Jong-Do;Lee, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.47-54
    • /
    • 2009
  • In the last few years, lasers have found new applications as tools for ceramic machining which is laser-assisted machining(LAM). LAM process for the machining of difficult-to-machine materials such as structural ceramics, has recently been studied on silicon nitride workpiece for a wide range of operating condition. However, there have been few studies on rake angle in LAM process. In this paper we analyzed difference of machinability between positive and negative rake angle in tools. We have obtained interesting results that we could eliminate chattering, lower specific cutting and cutting ratio in case of positive rake angle. The results suggest that positive rake angled tools can make more plastic deformation and stable cutting of silicon nitride in comparison with negative rake angled one.

Investigation of Cutting Conditions for Stable Machining and Machinability Evaluation in Milling Process of Al7050-T7451 by Response Surface Methodology (Al7050-T7451 소재의 밀링가공에서 반응표면법에 의한 가공성평가 및 가공안정화를 위한 절삭조건선정)

  • Koo, Joon-Young;Cho, Mun-Ho;Kim, Hyuk;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.284-290
    • /
    • 2014
  • Aluminum alloy is a core material for structural parts of aircraft and automobiles to reduce the weight and maintain high specific strength. This study evaluates the machinability and investigates the optimal cutting conditions considering the surface integrity and productivity for Al7050-T7451 milling. The machining variables considered are the feed per tooth, spindle speed, axial depth of the cut, and radial depth of the cut. The machinability evaluation of Al7050-T7451 is conducted by analyzing the cutting force signals, acceleration signals, AE signals, and machined surface conditions. The optimal cutting conditions are determined by analyzing the experimental results using response surface methodology for stable machining considering the productivity and surface integrity.

Analysis of Cutter Orientation when Ball Nose End Milling Nickel Based Superalloys (니켈계 합금의 볼엔드밀 가공에서 절삭 방향에 따른 영향)

  • Lee, Deuk-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2496-2501
    • /
    • 2000
  • High speed ball end milling is attracting interest in the aerospace industry for the machining of complex 31) airfoil surfaces in nickel based superalloys, Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness, when high speed ball end milling nickel based supperalloy(lnconel 718). Dry cutting was performed using 8min diameter solid carbide cutters coated with either TiA1N or CrN for the workpiece mounted at an angle of 45˚ from the cutter axis. A horizontal downwards cutting orientation provided the best tool life with cut lengths~50% longer than for all other directions. Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downwards direction produced the least vibration.

Efficient MQL-based Drilling of Inconel 601 (인코넬 601의 효율적인 MQL드릴링 가공)

  • Park, Ki-Beom;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In drilling Inconel 601, which is used for compressor cases in aircraft engines, a lot of cutting oil must be supplied. This prevents tools from wear and fracture due to the heat buildup resulting from the high-temperature resistance and toughness of this alloy. However, the cutting oil supply has compromised the machining environment. This has caused attention to shift to an environmentally friendly cutting fluid supply system called the Minimum Quantity Lubrication(MQL) system. The aim of this study was to find a more efficient drill processing method using MQL and to verify its performance. To that end, the properties of Inconel that make it difficult -to -drill were studied by a comparison with the drilling of SM45C. Specific factors (i.e., cutting force and tool wear) were examined in relation to the conditions in the MQL-based drilling system. Based on these results, a sealed cover and step feed were proposed as measures to increase the effectiveness of the MQL system. The efficiency of the proposed method was established.

A Study on the Optimum Machining Conditions and Energy Efficiency of a Laser-Assisted Fillet Milling

  • Woo, Wan-Sik;Lee, Choon-Man
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.593-604
    • /
    • 2018
  • Laser-assisted machining (LAM) is known to be an effective and economical technique for improving the machinability of difficult-to-machine materials. In the LAM method, material is preheated using a laser heat source and then the preheated area is removed by following cutting tool. For laser-assisted turning (LAT), the configuration of the system is not complicated because laser irradiates from a fixed position. In contrast, laser-assisted milling (LAMill) system is not only complicated but also difficult to control because laser heat source must always move ahead of the cutting tool along a three dimensional (3D) tool path. LAMill is still early stage and cannot yet be used to machine finished products with 3D shapes. In this study, a laser-assisted fillet milling process was developed for machining 3D shapes. There are no prior studies combining fillet milling and LAMill. Laser-assisted fillet milling strategy was proposed, and effective depth of cut (EDOC) was obtained using thermal analysis. Experiments were designed using response surface method and cutting force prediction equations were developed using statistical analysis and regression analysis. The optimum machining conditions were also proposed, and energy efficiency of the LAMill was analyzed by comparing the specific cutting energy of conventional machining (CM) and LAMill.

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.