• 제목/요약/키워드: Specific Surface Area

검색결과 1,596건 처리시간 0.029초

침전법으로 제조한 Alumina 분말의 특성(II) : 열처리에 따른 Alumina 분말의 특성 (Properties of Alumina Powder Prepared by Precipitation Method(II) : Properties of Alumina Powder on Heat-Treatment)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제25권3호
    • /
    • pp.193-200
    • /
    • 1988
  • 침전법에 의해서 pH가 7, 9, 10, 11인 조건에서 생성된 알루미늄 수산화물을 출발물질로 하여 열처리에 따른 알루미나 분말의 특성을 연구하였다. $600^{\circ}C$에서 2시간 동안 열처리하였을 때 비정질 알루미늄 수산화물의 결정수가 탈수된 후에 생성된 최초의 상은 비정질 알루미나의 비표면적은 감소하였다. 비정질 알루미늄 수산화물을 제외한 나머지 알루미늄 수산화물로부터 결정수의 탈수는 비표면적을 증가시켰으며 AlOOH 형태의 수산화물의 존재비가 클수록 전이 알루미나 존재영역까지는 비표면적이 더 크게 나타났다. $\alpha-Al_2O_3$로의 전이속도는 동일온도에서 pH=7 > pH=10 > pH=9 > pH=11의 순서로 일어났으며, 생성된 $\alpha-Al_2O_3$ 분말의 morphology는 알루미늄 수산화물의 외형을 남긴 형골입자(skeleton particle였다. 또한, 열처리 온도의 증가와 $\alpha-Al_2O_3$로의 전이가 일어남에 따라 비표면적의 감소와 더불어 입자성장이 일어나다.

  • PDF

X-ray Computed Tomography를 이용한 콘크리트의 손상파라미터 정량화 (Introduction to Qunatification of Damage Parameters for Concrete Using X-ray Computed Tomography)

  • 박대효;박재민;안태송
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.501-504
    • /
    • 2003
  • The purpose of this work is to introduce some fundamental stereological concepts to quantify damage parameters using X-ray CT(Computed Tomography) in the scope of CDM(Continuum Damage Mechanics). X-ray CT is a completely nondestructive technique for visualizing features in the interior of opaque solid objects, and for obtaining digital information on their 3D geometries and properties. Many researchers have introduced lots of damage parameters to model the mechanical behavior of deteriorated materials. Those damage parameters can be represented in many forms such as specific void or crack surfaces, the spacing between cracks, the specific damaged surface area, the specific damaged surface area tensor, the mean solid path among the damaged surfaces and the mean solid path tensor. Despite of many accomplishments in CDM since there is no the systematic experiment, it have limitations in application. In this situation, X-ray computed tomography is highlited by many researchers and applied in a wide range of materials including rock, bone, ceramic, metal, soft tissue and concrete.

  • PDF

도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법 (Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types)

  • 김영란;황성환
    • 상하수도학회지
    • /
    • 제35권2호
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.

Effect of vanadium surface density and structure in VOx/TiO2 on selective catalytic reduction by NH3

  • Won, Jong Min;Kim, Min Su;Hong, Sung Chang
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2365-2378
    • /
    • 2018
  • We investigated the correlation between vanadium surface density and VOx structure species in the selective catalytic reduction of NOx by $NH_3$. The properties of the $VOx/TiO_2$ catalysts were investigated using physicochemical measurements, including BET, XRD, Raman spectroscopy, FE-TEM, UV-visible DRS, $NH_3-TPD$, $H_2-TPR$, $O_2-On/Off$. Catalysts were prepared using the wet impregnation method by supporting 1.0-3.0 wt% vanadium on $TiO_2$ thermally treated at various calcination temperatures. Through the above analysis, we found that VOx surface density was $3.4VOx/nm^2$, and the optimal V loading amounts were 2.0-2.5 wt% and the specific surface area was $65-80m^2/g$. In addition, it was confirmed that the optimal VOx surface density and formation of vanadium structure species correlated with the reaction activity depending on the V loading amounts and the specific surface area size.

화학적 표면처리에 따른 카본블랙/고무 복합재료의 접착력 증가 (Chemical Surface Treatment of Carbon Black to Enhance Interfacial Adhesion Between Elastomer and Carbon Black)

  • 김정순;이재락;신채호;나창운;박수진
    • Elastomers and Composites
    • /
    • 제34권3호
    • /
    • pp.222-228
    • /
    • 1999
  • 본 연구에서는, 화학적 표면처리에 따른 카본블랙의 표면, 흡착, 그리고 미세구조의 성질과 물리적 표면 자유에너지를 고찰하였다. 실험적 결과를 통하여, 염기성 용액으로 표면 처리한 경우 pH와 비표면적의 변화 없이 표면 자유에너지의 비극성 또는 극성요소의 증가를 가져왔다. 반면에 산성표면처리의 경우에는 표면특성, 흡착성질과 미세구조의 큰 변화를 확인하였다. 특히, 염기성 처리된 카본블랙은 비극성이나 비표면적의 중요한 인자로 표면 자유에너지의 London 비극성 요소의 증가를 볼 수 있었다. 이는 카본블랙/고무 복합재료에 있어서, 카본블랙이 강화재의 역할 뿐 아니라 분산력 발달에 중요한 역할을 담당하고 있기 때문으로 사료된다.

  • PDF

Characteristics of Pt-Ru Catalyst Supported on Activated Carbon for Direct Methanol Fuel Cell

  • Jung, Doo-Hwan;Jung, Jae-Hoon;Hong, Seong-Hwa;Peck, Dong-Hyun;Shin, Dong-Ryul;Kim, Eui-sik
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.121-125
    • /
    • 2003
  • The Pt-Ru/Carbon as an anode catalyst supported on the commercial activated carbon (AC) having high surface area and micropore was characterized for application of Direct Methanol Fuel Cell (DMFC). The Pt-Ru/AC anode catalyst used in this experiment showed the performance of $600\;mA/cm^2$ current density at 0.3 V. The borohydride reduction process using $NaBH_4$, denoted as a process A, showed much higher current and power densities than process B prepared by changing the reduction and washing process of process A. The particle sizes are strongly affected by the reduction process than the specific surface area of raw active carbon and the sizes are almost constant when the specific surface area of carbon are over than the $1200\;m^2/g$. Smaller particle size of catalyst and more narrow intercrystalite distance increased the performance of DMFC.

  • PDF

마이크로파를 이용한 탈착시스템에서 개질화 된 활성탄의 흡.탈착 특성 (Adsorption and Desorption Characteristics of Toluene in Modified Activated Carbon Using Microwave Irradiation)

  • 김범준;최성우
    • 한국환경과학회지
    • /
    • 제17권5호
    • /
    • pp.493-500
    • /
    • 2008
  • This paper describes the adsorption/desorpton efficiency of a modified activated carbon by irradiated microwave to treat toluene. By employing microwave energy, the regeneration time was considerably shortened compared with conventional thermal heating regeneration. New adsorbent called ACB (Activated Carbon-Bentonite) was prepared from powder activated carbon with mixing bentonite as a binder. Specific surface area, average pore size and total pore volume of ACB were calculated from the nitrogen adsorption/desorption isotherm. The surface of ACB was characterized with scanning electron microscope(SEM). The results showed that the specific surface area, total pore volume, average pore size of ABC was not influenced by regenerating cycle with microwave irradiation. Toluene was adsorbed onto ACB which desorbed by MW irradiation. Absorption capacity of ACB was 0.117 $g_{toluene}/g_{ACB}$. Desorption efficiency of toluene increased as higher microwave output was applied.

Steam Activation Behaviors of Oxidatively Stabilized Petroleum-based Pitch Fibers Spun by Melt-blown Method

  • Kim, Chan;Kim, Young-Min;Yang, Kap-Seung
    • Carbon letters
    • /
    • 제3권2호
    • /
    • pp.93-98
    • /
    • 2002
  • Short pitch fibers were prepared from petroleum based isotropic precursor pitch by melt-blown technology. The pitch fibers were stabilized in oxidizing condition, followed by steam activations at various conditions. The fiber surface and pore structures of the activated carbon fibers (ACFs) were respectively characterized by using SEM and applying BET theory from nitrogen adsorption at 77 K. The weight loss of the oxidized fiber was proportional to activation temperature and activation time, independently. The adsorption isotherms of the nitrogen on the ACFs were constructed and analyzed to be as Type I consisting of micropores mainly. The specific surface area of the ACFs proportionally increased with the weight loss at a given activation temperature. The specific surface area was ranged 850~1900 $m^2/g$ with pores of narrow distribution in sizes. The average pore size was ranged 5.8~14.1 ${\AA}$ with the larger value from the more severe activation condition.

  • PDF

Grinding Method for Increasing Specific Surface Area of Fluidized Bed Fly Ash

  • Lim, Chang Sung;Lee, Ki Gang
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.153-159
    • /
    • 2019
  • In this study, fly ash of a fluidized bed boiler produced in a power plant was stabilized by hydration and carbonation reaction. Then, each raw material was pulverized by two kinds of grinding equipment (Planetary mills and pot mills); the degree of grinding and the agglomeration behavior were observed. It was found that there were changes of specific surface area and particle size distribution according to grinding time. The surface of the raw material was observed using an optical microscope. As a result, agglomerates of about 75 ㎛ or more due to electrostatic phenomenon were formed as the grinding time became longer; it was confirmed that the crushing efficiency slightly increased with use of antistatic agent.

Preparation of Macroporous Pellet from Industrial Waste Flyash by Foaming Method

  • Park, Jai-Koo;Kim, Hyun-Jung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.638-643
    • /
    • 2001
  • Macroporous pellets were prepared from industrial waste flyash by foaming method. The surface and inside of flyash pellets, the shape was almost spherical and the average size was about 3 mm, were composed of the spherical pores interconnected through windows. The controlling of pellet size was conducted with solid loading. The flyash pellets with different relative density were characterized for porosity, average pore size, and specific surface area. As results, most physical properties had a tendency to increase as relative density decreased - extension ratio increased. The correlation between relative density and other properties was inspected through microstructural features evaluated by SEM. As a result, high porosity and high specific surface area were estimated to result from the superior connectivity between pores.

  • PDF