• Title/Summary/Keyword: Specific Stiffness

Search Result 331, Processing Time 0.027 seconds

Development of rotor profile design technology for improving the screw compressor performance (공기압축기 성능향상을 위한 로터 프로파일 설계기술 개발 연구)

  • Kim, Tae-Yoon;Lee, Jae-Young;Lee, Dong-Kyun;Kim, Youn-Jea
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.585-592
    • /
    • 2009
  • The performance of screw compressor depends on lots of design parameters of rotor profile, such as length of seal line, wrap angle, blow hole, suction and discharge port size, number of rotor lobe, etc. The optimum rotor profile makes it possible to increase the compression efficiency with low energy consumption, and to minimize the loss of power. In this research, a new rotor profile design and performance analysis are done by computer simulation. It is expected that the volumetric efficiency is improved because the internal leakage is reduced due to the minimization of blow hole and clearance, and the stiffness of rotors is increased due to the reduction of length to diameter ratio. Also, the specific power consumption will be secured for use ranging from low to high operation speed.

  • PDF

Structural Design on Joint Component of Composite Wing of WIG Craft

  • Lee, Younggyu;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.1-3
    • /
    • 2021
  • This study proposed a specific preliminary structural design procedure of the main wing for a small scale WIG vehicle to meet the target weight of the system requirement. The high stiffness and strength Carbon-Epoxy material was used for lightness, and the foam sandwich type structure at the upper skin and the spar webs was adopted for improvement of structural stability. After structural design, wing joint part was designed. Through investigation on structural design result, design modification was performed. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed.

Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces (일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

Cardiovascular risk factors of early atherosclerosis in school-aged children after Kawasaki disease

  • Cho, Hyun Jeong;Yang, Soo In;Kim, Kyung Hee;Kim, Jee Na;Kil, Hong Ryang
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.5
    • /
    • pp.217-221
    • /
    • 2014
  • Purpose: The aim of this study was to determine whether school-aged children with Kawasaki disease (KD) have an increased risk for early atherosclerosis. Methods: The study included 98 children. The children were divided into the following groups: group A (n=19), KD with coronary arterial lesions that persisted or regressed; group B (n=49), KD without coronary arterial lesions; and group C (n=30), healthy children. Anthropometric variables and the levels of biochemical markers, including total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A, apolipoprotein B, homocysteine, highsensitivity C-reactive protein (hs-CRP), and brachial artery stiffness using pulse wave velocity were compared among the three groups. Results: There were no significant differences in blood pressure and body index among the three groups. Additionally, there was no sex-specific difference. Moreover, the levels of triglyceride, HDL-C, apolipoprotein A, and hs-CRP did not differ among the three groups. However, the levels of total cholesterol (P =0.018), LDL-C (P =0.0003), and apolipoprotein B (P =0.029) were significantly higher in group A than in group C. Further, the level of homocysteine and the aortic pulse wave velocity were significantly higher in groups A and B than in group C (P=0.0001). Conclusion: School-aged children after KD have high lipid profiles and arterial stiffness indicating an increased risk for early atherosclerosis.

Mechanical Behavior of New Thin Sandwich Panel Subjected to Bending (새로운 박판샌드위치 판재의 삼점굽힘거동)

  • Lee, Jung-In;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • A new thin sandwich panel composed of an aluminum expanded metal core adhesively jointed with stainless steel face sheets is introduced, and its mechanical behavior under three-point bending is investigated. The strength and stiffness are analyzed theoretically, and the press-formability and strength enhancement are evaluated experimentally. The specimens with the specific configurations exhibit face yielding well before face-core separation, which means that the sandwich panel can be formed by a press without failure. The measured load levels corresponding to the face yielding and the face-core separation agree fairly well with the theoretical estimations. For a given weight, the sandwich panel is superior to a solid panel in terms of strength, stiffness, and press-formability.

Seismic response of masonry infilled RC frames: practice-oriented models and open issues

  • Lima, Carmine;De Stefano, Gaetano;Martinelli, Enzo
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.409-436
    • /
    • 2014
  • Although it is widely accepted that the interaction -between masonry infill and structural members significantly affects the seismic response of reinforced concrete (RC) frames, this interaction is generally neglected in current design-oriented seismic analyses of structures. Moreover, the role of masonry infill is expected to be even more relevant in the case of existing frames designed only for gravitational loads, as infill walls can significantly modify both lateral strength and stiffness. However, the additional contribution to both strength and stiffness is often coupled to a modification of the global collapse mechanisms possibly resulting in brittle failure modes, generally related to irregular distributions of masonry walls throughout the frame. As a matter of principle, accurate modelling of masonry infill should be at least carried out by adopting nonlinear 2D elements. However, several practice-oriented proposals are currently available for modelling masonry infill through equivalent (nonlinear) strut elements. The present paper firstly outlines some of the well-established models currently available in the scientific literature for modelling infill panels in seismic analyses of RC frames. Then, a parametric analysis is carried out in order to demonstrate the consequences of considering such models in nonlinear static and dynamic analyses of existing RC structures. Two bay-frames with two-, three- and four-storeys are considered for performing nonlinear analyses aimed at investigating some critical aspects of modelling masonry infill and their effects on the structural response. Particularly, sensitivity analyses about specific parameters involved in the definition of the equivalent strut models, such as the constitutive force-displacement law of the panel, are proposed.

Fatigue Damage Evaluation of Woven Carbon-Fiber-Reinforced Composite Materials by Using Fatigue Damage Model (피로 손상 모델을 이용한 직조 탄소섬유강화 복합재료의 피로 손상 평가)

  • Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Owing to the high specific strength and stiffness of composite materials, they are extensively used in mechanical systems and in vehicle industries. However, most mechanical structures experience repeated load and fatigue. Therefore, it is important to perform fatigue analysis of fiber-reinforced composites. The properties of composite laminates vary depending upon the stacking sequence and stacking direction. Fatigue damage of composite laminates occurs according to the following sequence: matrix cracking, delamination, and fiber breakage. In this study, fatigue tests were performed for damage analysis. Fatigue damages, which have to be considered in fatigue analysis, are determined by using the stiffness values calculated from hysteresis loops, and the obtained fatigue damage curve is examined using Mao's equation and Abdelal's equation.

A Study on the Standardized Finite Element Models for Carbody Structures of Railway Vehicle Made of Sandwich Composites (샌드위치 복합재 적용 철도차량 차체 구조물의 표준유한요소모델 제시 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Ko, Hee-Young;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • This paper describes the standardized finite element model for carbody structures of railway vehicle made of sandwich composites. Recently, sandwich composites were widely used to railway vehicle due to the improvement of energy efficiency, high specific stiffness and strength, weight reduction and space saving in korea. Therefore, structural integrity should be verified using finite element analysis prior to the manufacture of composite railway vehicle. The standardized finite element model for composite carbody structures was introduced through comparing the results of real structural test under vertical, compressive, twisting load and natural frequency test of various railway vehicles in this study. The results show that the quadratic shell element is suitable to model the reinforced metal frame used to improve the flexural stiffness of sandwich panel compared to beam element, and layered shell and solid element are recommended to model the skin and honeycomb core of sandwich panel compared to sandwich shell element. Also, the proposed standard finite element model has the merit of being applied to crashworthiness problem without modifications of finite element model.

Study on the Dynamic Characteristics of a Manual Transmission Using Linear Models (선형모델을 이용한 수동변속기의 동적 특성 연구)

  • Yoon, Jong-Yun;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.240-248
    • /
    • 2013
  • Torsional vibrations, such as the gear rattle of the manual transmission in vehicle systems, are correlated with the firing stroke from the engine. These vibro-impacts can be examined based upon linear time-invariant analysis. In order to understand the gear dynamics, a specific manual transmission with a front-engine front-wheel drive configuration is investigated. A method to reduce the degrees of freedom is suggested based upon the eigensolutions and frequency response functions, which will lead to the development of an efficient matrix size. The dynamic characteristics of single- and dual-mass flywheels are then compared. The effect of the dual-mass flywheel is investigated based upon the mobility analysis, which will lead to understanding of the concepts for avoiding vibro-impacts. A linear time-invariant system model is examined by employing the effective clutch stiffness from a two-stage clutch damper. Thus, the relationship between the dynamic characteristics and the clutch damper can be predicted by assuming a combination of different stage stiffness levels.

Equivalent linear and bounding analyses of bilinear hysteretic isolation systems

  • Wang, Shiang-Jung;Lee, Hsueh-Wen;Yu, Chung-Han;Yang, Cho-Yen;Lin, Wang-Chuen
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.395-409
    • /
    • 2020
  • With verifications through many relevant researches in the past few decades, adopting the equivalent lateral force procedure for designing seismically isolated structures as a preliminary or even final design approach has become considerably mature and publicly acceptable, especially for seismic isolation systems that mechanically exhibit bilinear hysteretic behavior. During the design procedure, in addition to a given seismic demand, structural designers still need to previously determine three parameters, such as mechanical properties of seismic isolation systems or design parameters and performance indices of seismically isolated structures. However, an arbitrary or improper selection of given parameters might cause diverse or even unacceptable design results, thus troubling structural designers very much. In this study, first, based on the criterion that at least either two design parameters or two performance indices of seismically isolated structures are decided previously, the rationality and applicability of design results obtained from different conditions are examined. Moreover, to consider variations of design parameters of seismically isolated structures attributed to uncertainties of mechanical properties of seismic isolation systems, one of the conditions is adopted to perform bounding analysis for seismic isolation design. The analysis results indicate that with a reasonable equivalent damping ratio designed, considering a specific variation for two design parameters (the effective stiffness and equivalent damping ratio) could present more conservative bounding design results (in terms of isolation displacement and acceleration transmissibility) than considering the same variation but for two mechanical properties (the characteristic strength and post-yield stiffness).