• Title/Summary/Keyword: Specific Stiffness

Search Result 331, Processing Time 0.032 seconds

Axial Collapse Characteristics of Combined Aluminum CFRP Square Tubes for Light-Weight (경량화용 혼성 알루미늄 CFRP 사각튜브의 축 압궤특성)

  • 이길성;차천석;정진오;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.110-113
    • /
    • 2004
  • Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.

  • PDF

Embodiment of Virtual Magnet Using a 6 DOF Force-Reflecting Haptic Inteface by Ultrasonic Motors (초음파 모터 구동 6자유도 역감 장치를 이용한 가상 자석의 구현)

  • 강원찬
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.729-734
    • /
    • 2000
  • This paper proposes virtual-magnetic system by a force-reflecting interface to drive a ultrasonic motors(USMs) To approach virtual magnet in graphic the 6 dDOF force-reflecting interfaces provides force feedback to users as if I is magnetic-force, So users can feel real magnet Effectively to display the magnetic-force we need the interface with specific characteristics such as low inertia almost zero friction and very high stiffness As an actuator for the interface the USMs have many good advantage satisfied these conditions over conventional servo motors. To estimate capability of this virtual-magnetic system we did an experiment of magnetism based on coulomb's law when Coulmb's low apply this experiment it is vey conformable to real magnet

  • PDF

Optimal design of composite pressure vessel for fuel cell vehicle using genetic algorithm (유전자 알고리즘을 이용한 수소 연료 자동차용 복합재 압력용기의 최적설계)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Chun-Gon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.23-27
    • /
    • 2007
  • To store hydrogen with high pressure is one of key technologies in developing FCVs (fuel cell vehicles). Especially, metal lined composite structure, which is called Type 3, is expected to effectively stand highly pressurized hydrogen since it has high specific strength and stiffness as well as excellent storage ability. However, it has many difficulties to design Type 3 vessels because of their complex geometry, fabrication process variables, etc. In this study, therefore, optimal design of Type 3 vessels was performed in consideration of such actual circumstances using genetic algorithm. Additionally, detailed finite element analysis was followed for the optimal result.

  • PDF

Nonlinear analysis of thin shallow arches subject to snap-through using truss models

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.521-542
    • /
    • 2013
  • In this study a truss model is used for the geometrically nonlinear static and dynamic analysis of a thin shallow arch subject to snap-through. Thanks to the very simple geometry of a truss, the equilibrium conditions can be easily written and the global stiffness matrix can be easily updated with respect to the deformed structure, within each step of the analysis. A very coarse discretization is applied; so, in a very simple way, the high frequency modes are suppressed from the beginning and there is no need to develop a complicated reduced-order technique. Two short computer programs have been developed for the geometrically nonlinear static analysis by displacement control of a plane truss model of a structure as well as for its dynamic analysis by the step-by-step time integration algorithm of trapezoidal rule, combined with a predictor-corrector technique. These two short, fully documented computer programs are applied on the geometrically nonlinear static and dynamic analysis of a specific thin shallow arch subject to snap-through.

A Study on the Stresses causing the Bowing of Wooden Flush Doors for Furnitures and Buildings (가구(家具) 및 건축용(建築用) 목제(木製) 플러시도어의 길이 굽음 변형발생(變形發生) 원인응력(原因應力)에 관(關)한 연구(硏究))

  • Chung, Woo-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.39-54
    • /
    • 1992
  • Hollow core wood flush doors for wardrobes, and other general openings and bathroom were designed and fabricated to investigate the factors causing the bowing of them and to find out the countermeasure for the phenomena. Balance in grain orientation, thickness, specific gravity and M.C.(%) of face panel and symmetrical construction were the essential factors to prevent the deflection of flush doors just after manufacturing. Under one-sided severe service condition, the unbalance of M.C. between opposite face panels is inevitable. So the material as thick plywood with high stiffness is considered as an alternative for the stile. UF resin mixing into PVAc emulsion is preferred for bathroom.

  • PDF

A Study on Optimal Design of Composite Materials using Neural Networks and Genetic Algorithms (신경회로망과 유전자 알고리즘을 이용한 복합재료의 최적설계에 관한 연구)

  • 김민철;주원식;장득열;조석수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.501-507
    • /
    • 1997
  • Composite material has very excellent mechanical properties including tensile stress and specific strength. Especially impact loads may be expected in many of the engineering applications of it. The suitability of composite material for such applications is determined not only by the usual paramenters, but its impactor energy-absorbing properties. Composite material under impact load has poor mechanical behavior and so needs tailoring its structure. Genetic algorithms(GA) is probabilistic optimization technique by principle of natural genetics and natural selection and neural networks(NN) is useful for prediction operation on the basis of learned data. Therefore, This study presents optimization techniques on the basis of genetic algorithms and neural networks to minimum stiffness design of laminated composite material.

  • PDF

Forming Analysis for Warm Deep Drawing Process of Magnesium Alloy Sheet (마그네슘 합금 판재의 온간 딥드로잉 공정의 성형해석)

  • Lee, M.H.;Kim, H.Y.;Kim, H.J.;Kim, H.K.;Oh, S.I.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.401-405
    • /
    • 2007
  • Due to the low densities and high specific strength and stiffness, magnesium alloy sheets are very attractive lightweight materials for automotive and electrical products. However, the magnesium alloy sheets should be usually formed at elevated temperature because of their poor formability at room temperature. For the use of the magnesium alloy sheets for an industrial, their mechanical properties at elevated temperature and appropriate forming process conditions have to be developed. In this study, non-isothermal simulation of a square cup drawing of magnesium alloy sheets have been conducted to evaluate a proper forming process conditions such as the tool temperature, the tool shoulder radius, friction between the blank and the tools. According to this study, appropriate forming process conditions of square cup drawing at elevated temperature from magnesium alloy sheets are suggested.

Realization of Cilia Motion of Annelida by Distributed IPMC Actuators

  • Kwangmok Jung;Sungmoo Ryew;Kim, Hunmo;Nam, Jae-do;Jae wook Jeon;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.103.3-103
    • /
    • 2001
  • Recently Electro active polymer has been discussed in various researches as new actuators replacing the human muscles. Since they have confronted a limitation of more advanced application with traditional actuator. IPMC (Ion exchange Polymer Metal Composite) is one of candidate materials for new actuators. In this paper, we propose a new approach and design principle for the IPMC polymer actuator to conquer the weaknesses of IPMC that is intrinsic weak structural stiffness and low trust forces. In the first we performs some experimental works about how the basic specific characteristics of IPMC vary and what the optimal operating conditions are. And we have applied IPMC as active cilium for realization of annelida motion like ...

  • PDF

The Evaluation of the Structural Strength to Check the Basic Design for the Composite Carbody of the Tilting Train (복합재 틸팅열차 차체 구조물의 기본설계 검증을 위한 강도 평가)

  • 신광복;박기진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.203-206
    • /
    • 2003
  • Using composite materials for the carbody of tilting train has many advantages such as manufacturing variety, specific high-strength & stiffness characteristics, and long-life durability, but the strongest advantage could be the possibility of lightweight product. In the leading countries, the composite materials are used for the material fur drivers'cabs, interior/exterior equipments for railway train, and it is now developing the composite materials applied for the train carbody structure. In this paper, we conducted the evaluation of structural stability for the aluminum and composite carbody of the Korean Tilting Train express(TTX) with the service speed of 180km/h.

  • PDF

Evaluation of Inhomogeneous Deformation and Stress Concentration In Polymer Composites Injection Weld by means of Thermoelastic Techniques

  • Lim, Jae-Kyoo;Kim, Yon-Jig
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1616-1622
    • /
    • 2001
  • Fiber composite materials are widely used in aerospace industries due to their high specific strength and stiffness. Especially, the increasing use of polymer composite materials for injection of automobile components has led to a considerable interest in the application of stress pattern analysis by thermal emission to these composite materials. Therefore, in this study the microstructure of glass fiber orientation at the parent and weld line of polycarbonate is observed by a light transmission. And we also investigate a stress concentration model of a notch including short glass fibers. Especially the polymer injection weld reorients the fiber to suggest a new method for the evaluation of inhomogeneous deformation.

  • PDF