• 제목/요약/키워드: Specific Fuel Consumption

검색결과 297건 처리시간 0.029초

농용(農用) 디이젤 엔진 연료(燃料)로서의 에타놀 이용(利用)에 관(關)한 연구(硏究) (Technical Feasibility of Ethanol as a Fuel for Farm Diesel Engines)

  • 유관희;배영환;유수남
    • Journal of Biosystems Engineering
    • /
    • 제6권2호
    • /
    • pp.1-8
    • /
    • 1982
  • The objective of this study was to find out the technical feasibility of ethanol-diesel fuel blends as a diesel engine fuel. Fuel properties essential to the proper operation of a diesel engine were determined for blends containing several concentrations of ethanol in No. 2 diesel fuel. A single-cylinder diesel engine for a power tiller was used for the engine tests, in which load, speed and fuel consumption rate were measured. The fuels used in tests were No. 2 diesel fuel and a blend containing 10-percent ethanol and 90-percent No. 2 diesel fuel. The results of the study are summarized as follows. 1. It was not possible to blend ethanol and No. 2 diesel fuel as a homogeneous solution even though anhydrous ethanol was used. The problem of blending ethanol in No. 2 diesel fuel could be solved by adding butanol about 5% of the amount of ethanol in the blends. 2. Because ethanol had a much lower boiling point ($78.3^{\circ}C$ under atmospheric pressure) than a diesel fuel, it was necessary to store ethanol-diesel fuel blends airtight in order to prevent them from evaporation losses of ethanol. 3. The addition of ethanol to No. 2 diesel fuel lowered the fuel viscosity and the cetane rating, but a blend of 10% ethanol and 90% diesel fuel had a viscosity and a cetane rating well above the KS minimum values for No. 2 diesel fuel. 4. At the rated speed, the specific fuel consumption of No.2 diesel fuel was lower than that of the 10% ethanol blend for the almost entire range of load. However, under the overload condition the specific fuel consumption was lower for the 10% ethanol blend. 5. Under the variable-speed full-load tests, both fuels produced approximately the same torque and power. At the speeds of 1600rpm or below, the specific fuel consumption of No. 2 diesel fuel was lower than that of the 10% ethanol blend. At the speeds of 1600rpm or above, however, the specific fuel consumption was lower for the 10% ethanol blend. 6. At the ambient temperature above $15^{\circ}C$, the use of the 10% ethanol blend in the engine created a vapor lock in the fuel injection pump and stalled the engine. The vapor locking problem was overcome by chilling the surroundings of the fuel injection pump and the cylinder head with water.

  • PDF

예연소실(豫燃燒室)의 형상(形狀)이 농용(農用) 디이젤엔진의 성능(性能)에 미치는 영향(影響) (Effects of Form and Angle of Precombustion Chamber on Performance of Agricultural Diesel Engine)

  • 이욱;이승규;김성태
    • Journal of Biosystems Engineering
    • /
    • 제8권1호
    • /
    • pp.70-74
    • /
    • 1983
  • This study was conducted to determine whether or not the form and angle of the precombustion chamber affected the performance of agricultural diesel engines. Twenty different types of precombustion chambers were designed and tested using a two way classification with four individual tests. The output power and specific fuel consumption ratio at full load were measured and analyzed. The results of the study were summarized as follows; 1. The diameter of main passageway giving the best power output and specific fuel consumption ratio at full load was between 5.8 and 6.1mm. The ratio of area of main passageway bore to that of piston head was from 0.4 to 0.44 percent at the highest engine power. 2. The angle of main passageway giving the best power output and specific fuel consumption ratio at full load was between 41 and 43 degrees. 3. The change of the diameter of main passageway affected the output of engine more significantly than the change of angle, however, on the specific fuel consumption ratio the angle of main passageway had more effect than the diameter.

  • PDF

직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향;유채유를 중심으로 (Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DJ Diesel Engine;Using Rape Oil)

  • 임재근;최순열;조상곤
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2007년도 추계학술발표회
    • /
    • pp.133-137
    • /
    • 2007
  • An experimental study is conducted to evaluate and compare the use of BiodieseDI Fuel supplements at blend ratio of 10/90(BDF10) and 20/80(BDF20), in four stroke, direct injection diesel engine located at the authors' laboratory. especially this Biodiesel is produced from Rape oil at the authors' laboratory. The tests are conducted using each of the above fuel blends, in the engine working at a speed of 1800rpm and at a various loads. In each test, specific fuel consumption, exhaust emissions such as nitrogen oxides(NOx), carbon monoxide(CO) and Soot are measured. The results of investigation at various operating conditions are as follows (1) Specific fuel consumption is increased average 1.52%, maximum 1.84% at load 25% in case of BDF10, and average 1.98%, maximum 2.80% at load 25% in case of BDF20. (2) CO emission is decreased average 5.14%, maximum 6.09% at load 0% in case of BDF10, and average 7.75%, maximum 9.13% at load 0% in case of BDF 20. (3) NOx emission is increased average 2.97%, maximum 3.74% at load 0% in case of BDF10, and average 3.84%, maximum 4.67% at load 0% in case of BDF20. (4) Soot emission is decreased average 9.36%, maximum 10.85% at load 75% in case of BDF10, and average 11.99%, maximum 13.95% at load 75% in case of BDF20.

  • PDF

Miller 사이클을 이용한 중형 디젤 기관 성능 개선 (Improving the performance of a Medium Speed Diesel Engine Using Miller Cycle)

  • 김동훈;김기두;하지수;김호익;김주태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.248-255
    • /
    • 2002
  • Miller cycle was studied and analyzed by engine performance simulation to achieve very low fuel consumption and to meet the IMO NOx regulation on a medium speed diesel engine. Based on the performance simulation results the intake valve closing time for HYUNDAI HiMSEN 6H21/32 engine was set at 0deg.ABDC(After Bottom Dead Center). Also, the simulation results indicated that significant NOx reduction could be achieved with low reduction of fuel consumption. The performance simulation investigated the effect of compression ratio and turbocharger on fuel consumption and NOx concentration in combination with Miller cycle. The results indicated a significant reduction of fuel consumption with keeping NOx concentration. The results of performance simulation were compared with measured data to verify simulation results. The comparison showed the maximum error was 2.34% in exhaust temperature. Also, the experimental result showed that improvement in BSFC(Brake Specific Fuel Consumption) was 5.8g/kwh with keeping NOx level similar to simulation result.

선박용 디젤기관의 연료분사 시기가 배기배출물 특성에 미치는 영향 (Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Marine Diesel Engine)

  • 임재근;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.307-312
    • /
    • 2002
  • A study on the exhaust emissions of marine diesel engine with various fuel injection timing is performed experimentally .In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 0% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx, HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) NOx emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

디젤기관의 연료분사시기가 배기배출물 특성에 미치는 영향 (Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Diesel Engine)

  • 임재근;최순열
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.50-56
    • /
    • 2001
  • A study on the exhaust emissions of diesel engine with various fuel injection timing is peformed experimentally. In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 25% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx. HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) $NO_x$ emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

  • PDF

직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향 - 유채유를 중심으로 - (Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DI Diesel Engine - Using Rape Oil -)

  • 임재근;최순열;김석준;조상곤
    • 해양환경안전학회지
    • /
    • 제14권1호
    • /
    • pp.83-87
    • /
    • 2008
  • 산유국으로부터 에너지 독립을 하고 대기오염방지를 위한 배기배출물을 저감시키기 위하여 대체연료에 많은 관심을 가지고 있다. 폐유나 새로운 식물성 기름과 동물성 기름으로부터 생성할 수 있는 바이오디젤유가 압축점화기관인 디젤기관에 구조적인 변화없이 사용될 수 있다. 이 논문에서는 4행정 직접분사식 디젤기관을 이용하여 순수 디젤유와 바이오디젤 혼합유(바이오디젤 10% 및 20% 함유)의 연료소비율과 배기배출물에 미치는 영향을 제시했으며, 특히 실험에 사용된 바이오디젤 연료는 우리 실험실에서 유채유로부터 직접 생산되었다. 이 연구 결과 바이오디젤 혼합유가 디젤유 보다 연료소비율과 질소산화물은 약간 증가 되었고 일산화탄소와 매연은 상당히 감소되었다.

  • PDF

부분부하에서 비에스테르화 바이오디젤 5% 혼합유의 성능최적화를 위한 실험계획법 적용에 관한 연구 (A study on the application of DOE for optimization of blending oil with non-esterified biodiesel fuel at partial engine load)

  • 김희중;고대권;양주호;고성위;김영식;정태영;정석호
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.51-57
    • /
    • 2016
  • Non-esterified biodiesel fuel is cheaper than esterified that because of a simple manufacturing process that only consists of filtering. Applicability of this on diesel engine with electronic control system was accomplished, then optimization adopting a fractional factorial design and response surface methodology was carried out at 25% and 50% of engine load in this study. Pressure of common rail and injection timing mainly effected on responses as specific fuel oil consumption and nitrogen oxides regardless of engine load. Estimations were 310.3 g/kWh of specific fuel oil consumption and 237 ppm of nitrogen oxides at 25% load, and 233.2 g/kWh of specific fuel oil consumption and 730 ppm of nitrogen oxides at 50% load. Tests to verify these estimations were accomplished and as the results, specific fuel oil consumption was 300.4 g/kWh and NOx was 277 ppm at 25% load and 236.8 g/kWh and 573 ppm at 50% load.

디젤기관에서 바이오디젤 연료가 배기배출물 특성에 미치는 영향(대두유를 중심으로) (Effects of Biodiesel Fuel on Exhaust Emission Characteristics in Diesel Engine(Using Soybean Oil))

  • 임재근;최순열;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.27-32
    • /
    • 2008
  • Recently, we have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodisel was produced from soybean oil at our laboratory. This study showed that Soot and CO emission were decreased as the blending ratios of biodiesel to diesel oil increased, on the other hand NOx emission was slightly increased because of the oxygen content in biodiesel. Also, the biodiesel blends yielded slightly higher specific fuel consumption than that of diesel oil because of lower heating value of biodiesel.

압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends)

  • 권재성;김범수;양정현
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.