• Title/Summary/Keyword: Specific Absorption (SAR)

Search Result 106, Processing Time 0.026 seconds

Design of a Compact MIMO Antenna for Smart Glasses (스마트 안경용 초소형 MIMO 안테나 설계)

  • Choi, Sehwan;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.351-354
    • /
    • 2017
  • In this paper, a compact MIMO(Multiple Input Multiple Output) antenna for smart glasses is proposed. The proposed MIMO antenna is designed using T-shaped isolator inserted between two closely located Inverted-F Antenna(IFA) and using two slots located in the ground for isolation enhancement and impedance matching characteristic. The proposed antenna has only the overall dimensions of $35mm{\times}9mm{\times}0.8mm$ and operates in the 2.4 GHz industrial, scientific, and medical(ISM) band. To verify human body effect, the phantom is used for antenna performance. The measured specific absorption rate(SAR) value is 1.38 W/kg with an input power of 18 dBm. The performance of the proposed antenna is compared with that of previous works for verification.

Development of a Model to Evaluate RF Exposure Level from Cellular Phone using a Neural Network (신경망을 이용한 휴대전화에 의한 RF 노출 평가 모델의 개발)

  • Kim Soo-Chan;Nam Ki-Chang;Ahn Seon-Hui;Kim Deok-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.969-976
    • /
    • 2004
  • The wide and growing use of cellular phones has raised the question about the possible health risks associated with radio-frequency electromagnetic fields. It would be helpful for phone users to blow the exposure levels during cellular phone use. But it is very difficult to recognize the amount of exposure, because measuring accurate level of RF is a difficult matter. In this study, we developed a model to estimate the exposure level and the individual risk of exposure by utilizing the available informations that we can get. We used such parameters as usage time a day, total using period, distance between cellular phone and head, slope of cellular phone, hands-free usage, antenna pulled out or not SAR(Specific Absorption Rate) of cellular phone, and flip or folder type. We proposed a model presenting individual risk of RF exposure from level 0 to 10 by using a neural network.

Analysis of Electromagnetic Wave Exposure Due to 6.78 MHz Wireless Power Transfer System (6.78 MHz 무선전력전송 시스템에 의한 전자파 노출량 분석)

  • Yoon, Seok;Jung, Hyeonjong;Lim, Yeongseog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.954-963
    • /
    • 2017
  • In this paper, we analyzed the electric/magnetic field distribution and SAR distribution in a human body due to the resonant-type wireless power transfer(WPT) system with an operating frequency of 6.78 MHz. To analyze the field distribution under the unperturbed condition, a prototype system was fabricated and the measured results were compared with the simulation results. For safety during measurement, the available power to the transmitter coil is limited to 1 W. To analyze the induced current density and SAR distribution, a simple human model consisting of three layers, skin, fat, and muscle, was used for the simulation. The electromagnetic wave exposure levels obtained through measurement and simulation were compared with the recommended levels by the ICNIRP.

Human Safety Assessment for a 4 × 8 Array Antenna Used for Wireless Power Transfer at 2.4 GHz (2.4 GHz의 무선전력전송에 사용되는 4 × 8 배열 안테나에 대한 인체안전성평가)

  • Ju, Young Jun;Kim, Jun Hee;Lee, Yu-ri;Gimm, Yoon-Myoung;Lim, Yong Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.338-341
    • /
    • 2018
  • Wireless Power Transfer(WPT) of array antenna applied to beam-forming techniques enables highly efficient WPT when transmitters and receivers are not contacting and even when they are separated. However, this WPT method is possible to use only when human safety restriction by distance between the transmitters and the receivers is satisfied. In the paper, a $4{\times}8$ array antenna for 2.4 GHz is modeled by simulation, then electric field intensity and 10 gram average head SAR(Specific Absorption Rate) by distance away from the array antenna inputted 1 W of 2.4 GHz sinusoidal wave at each single antenna of the array antenna for 2.4 GHz were obtained. And they were compared with human safety restriction of draft of 2018 ICNIRP(International Commission on Non-Ionizing Radiation Protection) guidelines. As the result, power density of far field derived from the electric field intensity was $33.257W/m^2$, which satisfied with occupational human safety restriction but exceeded public's. In addition, the 10 gram average head SAR exceeded the human safety restriction.

  • PDF

Computation of Absorbed Power adiated from a Portable Phone Using FDTD (FDTD 방법을 이용한 휴대폰 전파의 인체 흡수전력량 산출)

  • 김채영;이승학;정백호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.491-498
    • /
    • 1998
  • Based on FDTD(Finite-Difference Time-Domain) method the human head absorbed power radiated from a 1.8 GHz portable phone is computed. For this computation the 7 layered media for the human head modeling and the monopole antenna attached to metallic box for the portable phone are used. To reflect the real circumstances typical sizes of human heads and portable phones are considered in the calculation. The length of monopole antenna is 4.5 cm. Under the predetermined model the distribution of SAR over the human head are calculated, and from which the place of maximum SAR is near the head skin surface, not deep places far into the head. The computation shows the maximum SAR to be 1.4 mWg somewhat less than the internationally adopted value of 1.6 mW/g.

  • PDF

A Triple Band Deep-Tissue Antenna for Biomedical Implants (심부 조직 인체 삽입용 세 가지 밴드 안테나)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.383-386
    • /
    • 2017
  • In this study, we introduce a triple-band flexible implantable antenna that is tuned by using a ground slot in three specific bands, namely Medical Implanted Communication Service (MICS: 402-405 MHz) for telemetry, the midfield band (lower gigahertz: 1.45-1.6 GHz) for Wireless Power Transfer (WPT), and the Industrial, Scientific and Medical band (ISM: 2.4-2.45 GHz) for power conservation. This antenna is wrapped inside a printed 3D capsule prototype to show its applicability in different implantable or ingestible devices. The telemetry performance of the proposed antenna was simulated and measured by using a porcine heart. From the simulation and measurement, we found that use of a ground slot in the implantable antenna can improve the antenna performance and can also reduce the Specific Absorption Rate (SAR).

Design and SAR Analysis of Broadband Monopole Antenna Using Loop and T-Shaped Patches (사각 루프와 T자형 패치를 결합한 광대역 평면형 모노폴 안테나 설계 및 SAR 분석)

  • Jang, Ju-Dong;Lee, Seungwoo;Kim, Nam;Choi, Dong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, a broadband planar monopole antenna for multi-band services is proposed. The physical size of the proposed antenna is miniaturized by folding a rectangular loop. And a resonance point in the 3.9 GHz band is reduced by a coupling phenomenon with the central part of the T-shaped patch and the folded rectangular loop. In addition, the T-shaped patch is inserted to the rectangular shaped monopole antenna due to deriving the broadband frequency characteristics. The frequency characteristic is optimized by adjusting the gap and length of the folded rectangular loops and a transverse diameter of the T-shaped patch. The antenna dimensions including the ground plane are $40{\times}60{\times}1.6mm^3$. It is fabricated on the FR-4 substrate(${\epsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. In the measured result, the bandwidth corresponding to the VSWR of 2:1 is 162 MHz(815~977 MHz) and 2,530 MHz(1.43~3.96 GHz). For analyzing the human effect by the proposed antenna, 1 g and 10 g averaged SARs are simulated and measured. As the simulated results, 1 g-averaged SAR is 1.044 W/kg, and 10 g-averaged SAR is 0.718 W/kg. This result are satisfied by the SAR guidelines which are 1.6 W/kg(1 g-averaged) and 2.0 W/kg(10 g-averaged).

Design of a Miniaturized High-Isolation Diversity Antenna for Wearable WBAN Applications

  • Kim, Seongjin;Kwon, Kyeol;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • This paper proposes a miniaturized high-isolation diversity antenna for wearable wireless body area network (WBAN) applications. An inverted-F type radiating element is used to reduce the overall dimension of the proposed antenna to $30mm{\times}30mm{\times}2.5mm$. The antenna performance on the human body phantom is analyzed through simulation and the performance of the fabricated antenna is verified by comparing the measured data with that of the simulation when the antenna is placed on a semi-solid flat phantom with equivalent electrical properties of a human body. The fabricated antenna has a 10 dB return loss bandwidth over the Industrial Scientific Medical (ISM) band from 2.35 GHz to 2.71 GHz and isolation is higher than 28 dB at 2.45 GHz. The measured peak gain of antenna elements # 1 and # 2 is -0.43 dBi and -0.54 dBi, respectively. Performance parameters are analyzed, including envelope correlation coefficient (ECC), mean effective gain (MEG), and the MEG ratio. In addition, the specific absorption ratio (SAR) distributions of the proposed antenna are measured for consideration in use.

Development and evaluation of MR compatible patch antenna for hyperthermia (온열치료를 위한 MR호환 평판가열안테나 개발 및 성능평가)

  • Kim, D.H.;Chun, S.I.;Jang, M.Y.;Yoon, M.S.;Kim, Y.B.;Jung, B.D.;Nam, S.H.;Mun, C.W.
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.2
    • /
    • pp.17-21
    • /
    • 2009
  • The thermal treatment have been combined with MRI which is able to acquire both an anatomical image with high-contrast and a thermal image, and have recently used for removing the tumor effectively. This study is to make a patch antenna which is designed to operate at 2.45GHz that has compatibility with MRI. The characteristic and specific absorption rate(SAR) were confirmed using computer simulation and confirmed a possibility of hyperthermia by performing experiment.

  • PDF

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF