• Title/Summary/Keyword: Specific Energy Consumption

Search Result 375, Processing Time 0.029 seconds

Effects of Refining Condition on the Specific Energy Consumption and Physical Properties of Liner (펄프의 고해 조건이 비에너지 소비와 라이너의 물성에 미치는 영향)

  • 원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • The effects of refining consistency and plate gap on the specific energy consumption and physical properties of liner were investigated. Higher refining consistency and narrower plate gap brought about the reduction of specific energy consumption to decrease the freeness. Refining consistency and plate gap did not affect the bulk, Taber stiffness and compression index. The reduction of freeness and/or the increase of specific energy consumption caused the decrease of bulk and Taber stiffness, but increased the compression index. The effect of grammage on bulk was not observed, but Taber stiffness and compression index were increased with grammage. The bulk was decreased with the reduction of freeness rapidly at the above 400 mL CSF, and then levelled off. It is expected that the reduction of energy consumption could be obtained from the application of higher refining consistency and narrower plate gap during refining.

Mechanical energy consumption of a four-legged walking vehicle (4 각보행로보트의 기계적 에너지 소모량)

  • 홍형주;김진연;윤용산
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.63-68
    • /
    • 1987
  • In this study, a pantograph leg of the four legged walking vehicle is analysed with regard to mechanical energy consumption. Energy efficiency of the vehicle is estimated in terms of specific resistance varying body height, stride length and walking speed. The interaction between specific resistance and the parameters is investigated.

  • PDF

Estimation of the Energy Saving Potential using Energy Bandwidth Analysis in Manufacturing Plant (에너지 대역분석 기법을 이용한 생산플랜트에서 에너지절감 잠재량 산정)

  • Park, Hyung-Joon;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.236-240
    • /
    • 2011
  • Currently one of the most importance issues in industrial sector is energy cost and energy efficiency. The manufacturing plants especially have made many efforts to reduce energy cost by implementing maintenances. But in many cases, they are not aware that how much energy could be saved more. If we know the best energy consumption, which signifies energy baseline, we can control the intensity of maintenances. One way to obtain the baseline is using proper statistics from a specific plant, a sector of industry. Energy bandwidth signifies the gap between actual Specific Energy Consumption(SEC) of a certain plant and minimum SEC of the best plant, and estimate energy saving potential(ESP) is a result of bandwidth analysis. We chose a model plant and implemented some maintenance for a year, and then we obtained ESP. Additionally we could determine the decreased amount of carbon emissions from the plant using Carbon Emissions Factor(CEF) by Intergovernmental Panel on Climate Change(IPCC).

Renewable energy powered membrane systems: inorganic contaminant removal from Australian groundwaters

  • Richards, Laura A.;Richards, Bryce S.;Schafer, Andrea I.
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.239-250
    • /
    • 2011
  • A photovoltaic powered ultrafiltration and reverse osmosis system was tested with a number of natural groundwaters in Australia. The objective of this study was to compare system performance at six remote field locations by assessing the impact of water composition and fluctuating energy on inorganic contaminant removal using a BW30-4040 membrane. Solar irradiance directly affected pressure and flow. Groundwater characteristics (including TDS, salts, heavy metals, and pH), impacted other performance parameters such as retention, specific energy consumption and flux. During continual system operation, retention of ions such as $Ca^{2+}$ and $Mg^{2+}$ was high (> 95%) with each groundwater which can be attributed to steric exclusion. The retention of smaller ions such as $NO_3{^-}$ was affected by weather conditions and groundwater composition, as convection/diffusion dominate retention. When solar irradiance was insufficient or fluctuations too great for system operation, performance deteriorated and retention dropped significantly (< 30% at Ti Tree). Groundwater pH affected flux and retention of smaller ions ($NO_3{^-}$ and $F^-$) because charge repulsion increases with pH. The results highlight variations in system performance (ion retention, flux, specific energy consumption) with real solar irradiance, groundwater composition, and pH conditions.

A Measurement and an Analysis of Heating and DHW Energy Consumption in Apartment Buildings with individual Heating Systems (개별난방 공동주택의 난방 및 급탕 에너지사용량 계측 및 특성 분석)

  • Lee, Soo-Jin;Jin, Hye-Sun;Kim, Sung-Im;Lim, Su-hyun;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.6
    • /
    • pp.15-22
    • /
    • 2018
  • The purpose of this study was to suggest specific evaluation data for heating and DHW energy consumption characteristics through analyzing energy consumption measurement data of gas boiler in Apartment Buildings with individual heating systems. To do this, it was measured both gas flow and electricity for heating and DHW respectively, and then it was analyzed not only characteristics according to energy sources; gas and electricity, but also the effect of various factors on heating and DHW energy consumption. The result of this study were as follows. It was developed the electric energy estimation model of a gas boiler through analysis on patterns by energy sources. And the effective factors for heating and DHW energy consumption were demonstrated as follows: the area for exclusive use, the number of auxiliary heating equipments, the number of occupants, and the number of sanitary fixtures.

The Energy Efficient for Wireless Sensor Network Using The Base Station Location

  • Baral, Shiv Raj;Song, Young-Il;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Energy constraints of wireless sensor networks are an important challenge. Data Transmission requires energy. Distance between origin and destination has an important role in energy consumption. In addition, the location of base station has a large impact on energy consumption and a specific method not proposed for it. In addition, a obtain model for location of base station proposed. Also a model for distributed clustering is presented by cluster heads. Eventually, a combination of discussed ideas is proposed to improve the energy consumption. The proposed ideas have been implemented over the LEACH-C protocol. Evaluation results show that the proposed methods have a better performance in energy consumption and lifetime of the network in comparison with similar methods.

Trend Study on Research for Energy Consumption and Saving Method in Residential Sector of Japan (일본의 민생주택부문 에너지소비 및 절약기술관련 연구 개발동향)

  • Yoo, Jung-Hyun;Yuasa, Kazuhiro;Kim, Yong-Sick
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.819-824
    • /
    • 2008
  • Energy consumption in Korea and Japan has already progressed to high level. Especially, it will be important to take up the effort to achieve further energy savings in residential sector that has significant increase both nations. For this reason, research for energy consumption and saving method in residential sector compare Korea with Japan that of similar data to grasps the direction for energy savings. In addition for introduction of distributed energy system to residential sector, such as apartment house, the electricity and gas demand was simulated. To be more specific, several key characteristics were studied, such as housing type housing scale and width of common space.

  • PDF

Evaluation of combat calorie consumption based on GoBe2 nanosensor

  • Shuo Guan;Benxu Zou
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.527-539
    • /
    • 2023
  • Measuring energy burn during intensive combat sport has been a challenging concerns for a long time. In the present article, the energy consumption during combat sports is measured by use of wearable GoBe2 equipped with nanotechnology measuring devices. In this regard, 12 professional combat athletes were asked to wear GoBe2 devices during different sessions of intensive combat exercises. The curves provided by GoBe2 nano-sensor devices are further collected and analyzed for different combat durations. On the other hand, energy consumption in these athlete is calculated using other validated methods to evaluate reliability of GoBe2 wearable devices. Based on the results obtained from these experiments a multi-parameter mathematical model is presented for estimation of combat calorie consumptions. The results show that nanotechnology in these type of sensors could help in estimation of calorie consumption during combat. Moreover, the reliability of using wearable GoBe2 sensors are satisfactory except for some specific conditions. The mathematical model provides a satisfactory results based on athlete physical condition and also duration of the combat with about 8% error margin in the results.

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends (압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구)

  • JAESUNG KWON;BEOMSOO KIM;JEONGHYEON YANG
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

Comparative Evaluation of Indoor Temperature in Spring according to Sitting Orientation of Tower-Type Apartments (탑상형 아파트의 배치방향별 봄철 실내온도 비교평가)

  • Kim, Jun Hyun;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.175-185
    • /
    • 2011
  • It is usual for energy consumption in accordance with facing and sitting direction of tower-type apartments to be calculated by the official statistics or computer simulation. Previous studies for energy consumption appear to be very limited due to the dependence on flat type of apartment. Acknowledging these constraints, an empirical study for a tower type apartment was conducted to demonstrate how a on-site indoor temperature measurement in spring can be used to assist in estimating the total energy consumption in terms of facing and sitting orientation specific settings. The results indicate that maximum temperature difference in spring was identified as $1.16^{\circ}C$ between south and eastern direction. It is known that raising $1^{\circ}C$ indoor temperature require 7% more energy consumption than normal. The $1.16^{\circ}C$ difference means that sitting direction of tower type apartment is a crucial explanatory variable as unit of analysis for energy consumption. It was demonstrated that the indoor temperature could be used effectively as an indicator to estimate energy consumption among various sitting direction of tower type apartments. It is anticipated that this research output could be used as a valuable reference to support more scientific and objective decision-making for facing and sitting orientation of tower type apartments.