• Title/Summary/Keyword: Special moment building

Search Result 52, Processing Time 0.038 seconds

Nonlinear Dynamic Capacity of Reinforced Concrete Special Moment Frame Buildings (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 성능값)

  • Kim, Tae-Wan;Kim, Tae-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.209-216
    • /
    • 2006
  • For evaluation of building performance, a nonlinear dynamic capacity of the building is a key parameter. In this study, an reinforced concrete special moment resisting frame building was chosen to study the process of determining the nonlinear dynamic capacity. The building, which was designed by IBC 2003 representing new codes, was composed of special moment resisting frames in the perimeter and internal frames inside the building. The capacity, which is inter-story drift capacity, consists of two categories, local and global collapses. Global collapse capacity was determined by incremental dynamic analysis. Local collapse capacity was determined by the same method except for utilizing damage index. In audition to this, it was also investigated that the effect of including internal frames designed by gravity load in the analysis. Results showed that the damage index is a useful tool for determining local collapse. Furthermore, including the internal frames with special frames in the analysis is very important in determining the capacity of a building so both must be considered at the same time.

  • PDF

Inelastic Dynamic Demands of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 요구값)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.11-19
    • /
    • 2005
  • Seismic design of a building is usually performed by using the linear static procedure. However, the actual behavior of the building subjected to earthquake is inelastic and dynamic in nature. Therefore, inelastic dynamic analysis is required to evaluate the safety of the structure designed by the current design codes. For the validation, a RC special moment resisting frame building was chosen and designed by IBC 2003 representing new codes. Maximum plastic rotation and dissipated energy of some selected members were calculated for examining if the inelastic behavior of the building follows the intention of the code, and drift demand were calculated as well for checking if the building well satisfies the design drift limit. In addition, the effect of including internal moment resisting frames (non lateral resisting system) on analyses results was investigated. As a result of this study, the building designed by IBC 2003 showed the inelastic behavior intended in the code and satisfied the design drift limit. Furthermore, the internal moment resisting frames should be included in the analytical model as they affect the results of seismic analyses significantly.

Seismic performance evaluation of a RC special moment frame

  • Kim, Taewan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.671-682
    • /
    • 2007
  • The probability and the reliability-based seismic performance evaluation procedure proposed in the FEMA-355F was applied to a reinforced concrete moment frame building in this study. For the FEMA procedure, which was originally developed for steel moment frame structures, to be applied to other structural systems, the capacity should be re-defined and the factors reflecting the uncertainties related to capacity and demand need to be determined. To perform the evaluation procedure a prototype building was designed per IBC 2003, and inelastic dynamic analyses were conducted applying site-specific ground motions to determine the parameters for performance evaluation. According to the analysis results, distribution of the determined capacities turned out to be relatively smaller than that of the demands, which showed that the defined capacity was reasonable. It was also shown that the prototype building satisfied the target performance since the determined confidence levels exceeded the objectives for both local and global collapses.

Moment ratio considering composite beam action for steel special moment frames

  • Sang Whan Han;Soo Ik Cho;Taeo Kim;Kihak Lee
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.489-502
    • /
    • 2023
  • The strong column-weak beam (SCWB) moment ratio is specified in AISC 341 to prevent an abrupt column sway in steel special moment frames (SMFs) during earthquakes. Even when the SCWB requirement is satisfied for an SMF, a column-sway can develop in the SMF. This is because the contribution of the composite beam action developed in the concrete floor slab and its supporting beams was not included while calculating the SCWB moment ratio. In this study, we developed a new method for calculating the SCWB moment ratio that included the contribution of composite beam action. We evaluated the seismic collapse performance of the SMFs considering various risk categories and building heights. We demonstrated that the collapse performance of the SMFs was significantly improved by using the proposed SCWB equation that also satisfied the target performance specified in ASCE 7.

Design of RC dual system building using special seismic detail (내진특수상세를 적용한 RC 이중골조 건물의 설계)

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.190-193
    • /
    • 2006
  • The definition of the Dual system is that the total seismic force resistance is to be provided by the combination of the moment frame and the shear walls or braced frames in proportion to their stiffness and the moment frame shall be capable of resisting at least 25% of the design force in Korean Building Code 2005 (KBC 2005). But, the definition of moment frame is ambiguous whether the moment frame include the imaginary columns in the shear wall (Case I) or include only the columns outside the shear wall (Case II). 60-story RC building was designed as dual system for Case I and Case II, and the required strength and reinforcement are compared. Moment and axial capacity of the shear wall of Case II decreased about 5% due to the absence of the column in the shear wall. The requirement of upper and bottom reinforcement of slab in Case II increased 13% and 40%, respectively, when compared to those of Case I. The required longitudinal reinforcement in columns for Case II is about 1.5 times larger than that of Case I.

  • PDF

Evaluation of Response Modification Factor of Steel Special Resisting Frame Building Before and After Retrofitted with Buckling Restrained Brace (비좌굴가새의 보강 전과 후의 철골 특수모멘트저항골조 건물의 R계수 평가)

  • Shin, Jiuk;Lee, Kihak;Jo, Yeong Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • This research presents that seismic performance of steel moment resisting frame building designed by past provision(UBC, Uniform Building Code) before and after retrofitted with BRB (Buckling-Restrained Brace) was evaluated using response modification factor (R-factor). In addition, the seismic performance of the retrofitted past building was compared with that specified in current provision. The past building considered two different connections: bilinear connection, which was used by structural engineer for building design, and brittle connection observed in past earthquakes. The nonlinear pushover analysis and time history analysis were performed for the analytical models considered in this study. The R-factor was calculated based on the analytical results. When comparing the R-factor of the current provision with the calculated R-factor, the results were different due to the hysteresis characteristics of the connection types. After retrofitted with BRBs, the past buildings with the bilinear connection were satisfied with the seismic performance of the current provision. However, the past buildings with the brittle connection was significantly different with the R-factor of the current provision.

Seismic Performance Evaluation of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 내진 성능 평가)

  • Kim, Tae-Wan;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.39-45
    • /
    • 2007
  • In this study the probability and the reliability-based seismic performance evaluation procedure proposed in the FEMA-355F was applied to a reinforced concrete moment frame building. For the FEMA procedure, which was originally developed for steel moment frame structures, to be applied to other structural systems, the capacity should be re-defined and the factors reflecting the uncertainties related to capacity and demand need to be determined. To perform the evaluation procedure a prototype building was designed per IBC 2003, and inelastic dynamic analyses were conducted applying site-specific ground motions to determine the parameters for performance evaluation. According to the analysis results, distribution of the determined capacities turned out to be relative]y smaller than that of the demands, which showed that the defined capacity was reasonable. It was also shown that the prototype building satisfied the target performance since the determined confidence levels exceeded the otjectives for both local and global collapses.

Optimizing Design for Rudder Horn (Rudder Horn 최적화 설계 방안)

  • Park, Sung-Geun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.77-80
    • /
    • 2006
  • In recent booming up of the ship building market, the supplying of large scale casting is difficult to keep the delivery schedule for ship yard because of the restrict manufacturer in Korea. And also, it is main cause to rise-up the cost of castings. This paper describes the outline of guidance of optimizing design for Rudder Horn Casting to reduce the risk of the delivery problem to ship yard.

  • PDF

The Effect on Neglecting the Longitudinal Moment Terms in a Composite Liminate Plate with Stacking Sequence and Fiber Orientation (적층형태 및 보강방향에 따른 복합적층판의 종방향 모멘트 무시효과)

  • Lee, Bong-hak;Lee, Jung-ho;Hong, Chang-Woo;Kim, Kyung-Jin
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.97-105
    • /
    • 1998
  • The most of the design engineers for construction has academic background of bachelors degree. Theories for advanced composite structures are too difficult for such engineers and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. Such plates behave as special orthotropic plates and simple formulas developed by the author can be used. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.

  • PDF

Vulnerability assessment of residential steel building considering soil structure interaction

  • Kailash Chaudhary;Kshitij C. Shrestha;Ojaswi Acharya
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 2023
  • Special moment resisting steel frame structures are now being used commonly in highly seismic regions as seismically reliable structures. However, a very important parameter describing the dynamics of steel structures during earthquake loading, Soil Structure Interaction (SSI), is generally neglected. In this study, the significance of consideration of flexibility of soil in being able to obtain a result closer to reality is asserted. The current paper focuses on calculation of seismic fragility curves special moment resisting steel frame structures under different earthquake loadings for fixed-base and SSI models. The observation of obtained fragility curves lead to the conclusion that the SSI has a considerable effect on component fragility for the steel structures, with its effects decreasing for higher peak ground acceleration. The results show that the structures when considered SSI have a higher probability of exceeding a damage limit state. This observation attests the role of SSI in the accurate study of structural performance.