• 제목/요약/키워드: Special bridge

검색결과 210건 처리시간 0.027초

연직 지진하중을 받는 고속철도 특수교량의 주행안정성 평가 (Dynamic Stability Evaluation of Special Bridge for High Speed Railroad under Vertical Ground Motion)

  • 김동석;김성일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1464-1469
    • /
    • 2010
  • In this paper, the dynamic stability evaluation of special bridge for high speed railway under ground excitation is performed. The mass, damping, stiffness matrices of bridge are derived from the modal frequencies and mode shape vectors which can be obtained by commercial program. And the high speed train is modeled as multi-single d.o.f models for the sake of vehicle-bridge interaction analysis. In the vehicle-bridge interaction analysis, the vertical directional interaction is only considered. As a numerical example, the 3 span Extradosed bridge which is expected to be installed in Ho-Nam high speed railroad is considered. The analysis results show that the example bridge satisfies the criteria of dynamic stability.

  • PDF

드론과 A.I.를 이용한 특수교 주탑부 표면 손상 탐지 방법 연구 (A Study on the Surface Damage Detection Method of the Main Tower of a Special Bridge Using Drones and A.I.)

  • 이성진;주봉철;김정호;이태희
    • 한국방재안전학회논문집
    • /
    • 제16권4호
    • /
    • pp.129-136
    • /
    • 2023
  • 높은 주탑을 가지는 해상특수교량은 특수한 구조적 특징으로 인해 육안점검이 어려운 점검사각지대가 존재하게 되며, 이를 해결하기 위해 드론을 활용한 안전점검 방법들이 연구되고 있다. 본 연구에서는 드론을 이용하여 해상특수교량 주탑의 영상 데이터를 취득하고, 인공지능 알고리즘을 개발하여 주탑부 표면 손상에 대한 탐지를 수행하였다. 인공지능 알고리즘은 서로 다른 구조를 지닌 딥러닝 네트워크를 활용하여 앙상블을 형성한 모델을 구축하고 결과를 취합하는 스태킹 앙상블 학습법을 적용하였다.

드론을 활용한 케이블지지교량 안전점검 사각지대 해소 기술 (Cable-supported Bridge Safety Inspection Blind Spot Elimination Technology using Drones)

  • 이성진;주봉철;김정호
    • 한국방재안전학회논문집
    • /
    • 제15권4호
    • /
    • pp.31-38
    • /
    • 2022
  • 케이블로 상부구조가 지지되는 특수교량의 경우 특수한 장비와 인력이 없이는 접근이 어려운 사각지대가 다수 존재하고 있어, 안전점검에 많은 애로사항이 발생하고 있는 것이 현실이다. 본 연구에서는 사장교와 현수교 등 케이블지지교량의 안전점검 사각지대를 검토하고, 드론을 활용하여 사각지대를 해소할 수 있는 방안을 연구하는 것이 목적이다. 이를 위해 해상에 위치한 사장교를 드론을 활용하여 케이블과 보강형 그리고 주탑을 점검하였다. 본 연구를 통해 드론을 활용하여 점검자의 접근이 어려운 특수교량의 외부 안전점검이 가능함을 확인하였다. 특히 특수교량의 점검사각지대인 주탑 외부 상태 및 손상 확인을 위한 드론 점검은 매우 효과적인 안전점검 방법이다.

레일신축이음 설치된 장대레일 적용 연속교의 구조물-궤도 상호작용에 의한 온도하중이 교량 받침에 미치는 영향 (Effects of Bridge Bearings by Structure-Track Interaction for Continuous Bridge applied CWR with Rail Expansion Joint under Temperature Load)

  • 정지승;이종순
    • 한국안전학회지
    • /
    • 제25권5호
    • /
    • pp.54-61
    • /
    • 2010
  • The additional axial force of CWR(continuous welded rail) is occurred by structure-track interaction, in reverse, fixed supports of structure are applied the large load by that. Ratio of load which transferred on support through the bridge superstructure with one-side REJ by acceleration and braking load are stated in High-Speed Rail Design Criteria(2005). On the other hand the horizontal forces of support delivered to the load due to thermal loads has been no report about the criteria. Therefore, this study was performed the review of the reaction and displacement on support by structure-track interaction in a special bridge(composite brdiges, 45+55+55+45=200m) with REJ acting on the temperature load. As a result, because fixed support of a special bridge or a continuous bridge with REJ under the temperature load which is constant load has been acted the large lateral load by structure-track interaction, when determining the fixed bearing capacity of structure should be reflected in the results to secure the safety of structures was confirmed.

Experimental and finite element studies of special-shape arch bridge for self-balance

  • Lu, Pengzhen;Zhao, Renda;Zhang, Junping
    • Structural Engineering and Mechanics
    • /
    • 제35권1호
    • /
    • pp.37-52
    • /
    • 2010
  • Special-shape arch bridge for self-balance (SBSSAB) in Zhongshan City is a kind of new fashioned spatial combined arch bridge composed of inclined steel arch ribs, curved steel box girder and inclined suspenders, and the mechanical behavior of the SBSSAB is particularly complicated. The SBSSAB is aesthetic in appearance, and design of the SBSSAB is artful and particular. In order to roundly investigate the mechanical behavior of the SBSSAB, 3-D finite element models for spatial member and shell were established to analyze the mechanical properties of the SBSSAB using ANSYS. Finite element analyses were conducted under several main loading cases, moreover deformation and strain values for control section of the SBSSAB under several main loading cases were proposed. To ensure the safety and rationality for optimal design of the SBSSAB and also to verify the reliability of its design and calculation theories, the 1/10 scale model tests were carried out. The measured results include the load checking calculation, lane loading and crowd load, and dead load. A good agreement is achieved between the experimental and analytical results. Both experimental and analytical results have shown that the SBSSAB is in the elastic state under the planned test loads, which indicates that the SBSSAB has an adequate load-capacity. The calibrated finite-element model that reflects the as-built conditions can be used as a baseline for health monitoring and future maintenance of the SBSSAB.

종방향 활동체결구를 이용한 영종대교 남측 접속교량의 장대레일화 사례 (CWR for Young Jong Great Bridge Sourth Approach Section by ZLR (Zero Longitudinal Restraint))

  • 이덕영;양신추;권순섭;김용만
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1057-1064
    • /
    • 2004
  • For New In-Cheon Airport. South Approach Section of Young long Great Bridge is to be special concerned to CWR due to substructure was already constructed former railroad bridge design specification. So we applied maintenance free system and CWR (Continuous Welded Rail) by ZLR(Zero Longitudinal Restraint) at bridge expansion joint part. This thesis generally introduce for CWR by ZLR at South Approach Section of Young long Great Bridge.

  • PDF

Conceptual design of light bascule bridge

  • Xu, Weiwei;Ding, Hanshan;Lu, Zhitao
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.381-390
    • /
    • 2008
  • This paper proposed a conceptual design of bascule bridge, which is a new kind of movable bridge with an aim of reducing the weight of superstructure. Compared with the traditional bascule bridge, the light bascule bridge chooses cable-stayed bridge with inclined pylon as its superstructure; therefore, the functions of balance-weight and structure will fuse into one. Otherwise, it adopts moving counterweight to adjust its center of gravity (CG) to open or close the bridge. In order to lighten the superstructure, it uses contact springs to auxiliary retract, and intelligent prestressing system (IPS) to control the main girder's deformation. Simultaneously the vibration control scheme of structure is discussed. Starting from establishing the mechanical model of bridge, this article tries to analyze the conditions that the design parameters of structure and attachments should satisfy to. After the design procedure was presented, an example was also adopted to explain the primary design process of this kind bridge.

Simulation of vibrations of Ting Kau Bridge due to vehicular loading from measurements

  • Au, F.T.K.;Lou, P.;Li, J.;Jiang, R.J.;Zhang, J.;Leung, C.C.Y.;Lee, P.K.K.;Lee, J.H.;Wong, K.Y.;Chan, H.Y.
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.471-488
    • /
    • 2011
  • The Ting Kau Bridge in Hong Kong is a cable-stayed bridge comprising two main spans and two side spans. The bridge deck is supported by three towers, an end pier and an abutment. Each of the three towers consists of a single reinforced concrete mast strengthened by transverse cables and struts. The bridge deck is supported by four inclined planes of cables emanating from anchorages at the tower tops. In view of the heavy traffic on the bridge, and threats from typhoons and earthquakes originated in areas nearby, the dynamic behaviour of long-span cable-supported bridges in the region is always an important consideration in their design. Baseline finite element models of various levels of sophistication have been built not only to match the bridge geometry and cable forces specified on the as-constructed drawings but also to be calibrated using the vibration measurement data captured by the Wind and Structural Health Monitoring System. This paper further describes the analysis of axle loading data, as well as the generation of random axle loads and simulation of vibrations of the bridge using the finite element models. Various factors affecting the vehicular loading on the bridge will also be examined.

Evolving live load criteria in bridge design code guidelines - A case study of India based on IRC 6

  • Karthik, P.;Sharma, Shashi Kant;Akbar, M. Abdul
    • Structural Monitoring and Maintenance
    • /
    • 제9권1호
    • /
    • pp.43-57
    • /
    • 2022
  • One of the instances which demand structural engineer's greatest attention and upgradation is the changing live load requirement in bridge design code. The challenge increases in developing countries as the pace of infrastructural growth is being catered by the respective country codes with bigger and heavier vehicles to be considered in the design. This paper presents the case study of India where Indian Roads Congress (IRC) codes in its revised version from 2014 to 2017 introduced massive Special vehicle (SV) around 40 m long and weighing 3850 kN to be considered in the design of road bridges. The code does not specify the minimum distance between successive special vehicles unlike other loading classes and hence the consequences of it form the motivation for this study. The effect of SV in comparison with Class 70R, Class AA, Class A, and Class B loading is studied based on the maximum bending moment with moving load applied in Autodesk Robot Structural Analysis. The spans considered in the analysis varied from 10 m to 1991 m corresponding to the span of Akashi Kaikyo Bridge (longest bridge span in the world). A total of 182 analyses for 7 types of vehicles (class B, class A, class 70R tracked, class 70R wheeled, class AA tracked, AA wheeled, and Special vehicle) on 26 different span lengths is carried out. The span corresponding to other vehicles which would equal the bending moment of a single SV is presented along with a comparison relative to Standard Uniformly Distributed Load. Further, the results are presented by introducing a new parameter named Intensity Factor which is proven to relate the effect of axle spacing of vehicle on the normalized bending moment developed.

허가차량 통행에 대한 교량의 안전성 평가를 위한 허가차량 분류 체계 개발 (Development of Permit Vehicle Classification System for Bridge Evaluation in Korea)

  • 유상선;김경현;백인열;김지현
    • 한국산학기술학회논문지
    • /
    • 제21권12호
    • /
    • pp.845-856
    • /
    • 2020
  • 이 연구에서는 분리불가능한 허가차량의 통행에 대한 교량의 안전성 평가 체계를 정립하여 제안하였다. 대상으로 하는 허가차량의 하중효과와 도로교설계기준(한계상태설계법)의 설계차량하중의 계수하중효과를 비교하여, 허가차량의 체계를 일상허가와 두 개의 특별허가로 분류하였다. 일상허가 및 특별허가 1에서는 일반차량과 동시 통행하도록 제안하였으며, 특별허가 2에서는 허가차량이 단독 통행하도록 제안하였다. 허가차량의 전후에 동시 통행하는 일반차량의 연행을 고려하기 위하여 도로교설계기준의 표준차로하중을 이용하여 허가 하중 모형을 제안하였다. 제안된 허가 하중 모형을 적용하여 공용중인 프리스트레스트빔교 및 강박스교의 구조해석을 수행하였으며, 도로교설계기준의 하중·저항계수를 이용하여 허가하중 및 설계차량하중의 내하율 계산을 수행하였다. 교량 거더의 휨 및 전단에 대한 내하율 검토 결과 모든 차량하중의 내하율이 크게 계산되어 통행 가능한 것으로 확인되었다. 허가하중 및 설계차량하중의 휨 및 전단에 대한 교량의 신뢰도해석을 수행하여 신뢰도관점에서 충분한 안전성을 확보하는지 여부를 확인하였다. 도로교설계기준의 하중·저항계수를 이용하여 허가하중에 대한 최소요구강도를 계산하였으며, 최소요구강도의 신뢰도해석을 수행하였다. 최소 요구강도의 신뢰도해석 결과 대부분의 허가차량에 대하여 도로교설계기준의 목표신뢰도지수를 확보하는 것으로 확인되었다.