• Title/Summary/Keyword: Speaker recognition systems

Search Result 86, Processing Time 0.022 seconds

Deep neural networks for speaker verification with short speech utterances (짧은 음성을 대상으로 하는 화자 확인을 위한 심층 신경망)

  • Yang, IL-Ho;Heo, Hee-Soo;Yoon, Sung-Hyun;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.501-509
    • /
    • 2016
  • We propose a method to improve the robustness of speaker verification on short test utterances. The accuracy of the state-of-the-art i-vector/probabilistic linear discriminant analysis systems can be degraded when testing utterance durations are short. The proposed method compensates for utterance variations of short test feature vectors using deep neural networks. We design three different types of DNN (Deep Neural Network) structures which are trained with different target output vectors. Each DNN is trained to minimize the discrepancy between the feed-forwarded output of a given short utterance feature and its original long utterance feature. We use short 2-10 s condition of the NIST (National Institute of Standards Technology, U.S.) 2008 SRE (Speaker Recognition Evaluation) corpus to evaluate the method. The experimental results show that the proposed method reduces the minimum detection cost relative to the baseline system.

Optimally Weighted Cepstral Distance Measure for Speech Recognition (음성 인식을 위한 최적 가중 켑스트랄 거리 측정 방법)

  • 김원구
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.133-137
    • /
    • 1994
  • In this paper, a method for designing an optimal weight function for the weighted cepstral distance measure is proposed. A conventional weight function or cepstral lifter is obtained eperimentally depending on the spectral components to be emphasized. The proposed method minimizes the error between word reference patterns and the traning data. To compare the proposed optimal weight function with conventional function, speech recognition systems based on Dpynamic Time Warping and Hidden Markov Models were constructed to conduct speaker independent isolated word necogination eperiment. Results show that the proposed method gives better performance than conventional weight functions.

  • PDF

Speech Recognition in Noisy Environments using Wiener Filtering (Wiener Filtering을 이용한 잡음환경에서의 음성인식)

  • Kim, Jin-Young;Eom, Ki-Wan;Choi, Hong-Sub
    • Speech Sciences
    • /
    • v.1
    • /
    • pp.277-283
    • /
    • 1997
  • In this paper, we present a robust recognition algorithm based on the Wiener filtering method as a research tool to develop the Korean Speech recognition system. We especially used Wiener filtering method in cepstrum-domain, because the method in frequency-domain is computationally expensive and complex. Evaluation of the effectiveness of this method has been conducted in speaker-independent isolated Korean digit recognition tasks using discrete HMM speech recognition systems. In these tasks, we used 12th order weighted cepstral as a feature vector and added computer simulated white gaussian noise of different levels to clean speech signals for recognition experiments under noisy conditions. Experimental results show that the presented algorithm can provide an improvement in recognition of as much as from $5\%\;to\;\20\%$ in comparison to spectral subtraction method.

  • PDF

ON IMPROVING THE PERFORMANCE OF CODED SPECTRAL PARAMETERS FOR SPEECH RECOGNITION

  • Choi, Seung-Ho;Kim, Hong-Kook;Lee, Hwang-Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.250-253
    • /
    • 1998
  • In digital communicatioin networks, speech recognition systems conventionally reconstruct speech followed by extracting feature [parameters. In this paper, we consider a useful approach by incorporating speech coding parameters into the speech recognizer. Most speech coders employed in the networks represent line spectral pairs as spectral parameters. In order to improve the recognition performance of the LSP-based speech recognizer, we introduce two different ways: one is to devise weighed distance measures of LSPs and the other is to transform LSPs into a new feature set, named a pseudo-cepstrum. Experiments on speaker-independent connected-digit recognition showed that the weighted distance measures significantly improved the recognition accuracy than the unweighted one of LSPs. Especially we could obtain more improved performance by using PCEP. Compared to the conventional methods employing mel-frequency cepstral coefficients, the proposed methods achieved higher performance in recognition accuracies.

  • PDF

Effective Combination of Temporal Information and Linear Transformation of Feature Vector in Speaker Verification (화자확인에서 특징벡터의 순시 정보와 선형 변환의 효과적인 적용)

  • Seo, Chang-Woo;Zhao, Mei-Hua;Lim, Young-Hwan;Jeon, Sung-Chae
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.127-132
    • /
    • 2009
  • The feature vectors which are used in conventional speaker recognition (SR) systems may have many correlations between their neighbors. To improve the performance of the SR, many researchers adopted linear transformation method like principal component analysis (PCA). In general, the linear transformation of the feature vectors is based on concatenated form of the static features and their dynamic features. However, the linear transformation which based on both the static features and their dynamic features is more complex than that based on the static features alone due to the high order of the features. To overcome these problems, we propose an efficient method that applies linear transformation and temporal information of the features to reduce complexity and improve the performance in speaker verification (SV). The proposed method first performs a linear transformation by PCA coefficients. The delta parameters for temporal information are then obtained from the transformed features. The proposed method only requires 1/4 in the size of the covariance matrix compared with adding the static and their dynamic features for PCA coefficients. Also, the delta parameters are extracted from the linearly transformed features after the reduction of dimension in the static features. Compared with the PCA and conventional methods in terms of equal error rate (EER) in SV, the proposed method shows better performance while requiring less storage space and complexity.

  • PDF

Korean Broadcast News Transcription Using Morpheme-based Recognition Units

  • Kwon, Oh-Wook;Alex Waibel
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.3-11
    • /
    • 2002
  • Broadcast news transcription is one of the hardest tasks in speech recognition because broadcast speech signals have much variability in speech quality, channel and background conditions. We developed a Korean broadcast news speech recognizer. We used a morpheme-based dictionary and a language model to reduce the out-of·vocabulary (OOV) rate. We concatenated the original morpheme pairs of short length or high frequency in order to reduce insertion and deletion errors due to short morphemes. We used a lexicon with multiple pronunciations to reflect inter-morpheme pronunciation variations without severe modification of the search tree. By using the merged morpheme as recognition units, we achieved the OOV rate of 1.7% comparable to European languages with 64k vocabulary. We implemented a hidden Markov model-based recognizer with vocal tract length normalization and online speaker adaptation by maximum likelihood linear regression. Experimental results showed that the recognizer yielded 21.8% morpheme error rate for anchor speech and 31.6% for mostly noisy reporter speech.

Design of Intelligent Emotion Recognition Model (지능형 감정인식 모델설계)

  • 김이곤;김서영;하종필
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.46-50
    • /
    • 2001
  • Voice is one of the most efficient communication media and it includes several kinds of factors about speaker, context emotion and so on. Human emotion is expressed in the speech, the gesture, the physiological phenomena (the breath, the beating of the pulse, etc). In this paper, the method to have cognizance of emotion from anyone's voice signals is presented and simulated by using neuro-fuzzy model.

  • PDF

A study of speaker dependent speech recognition using neural network (신경회로망을 이용한 화자종속 음성인식 성능에 관한 연구)

  • 윤지원;이종수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.153-156
    • /
    • 2003
  • 본 연구는 화자종속 소어휘 음성인식의 성능을 개선하는 데 그 목적이 있다. 인식에 사용될 음성의 특징을 얻기 위해 Winer 필터와 LPC&Cepstrum을 이용하여 프레임 당 12차 패턴을 추출하였다. 추출된 특징패턴을 인식하는 인식부는 특히 소어휘 음성인식에 우수한 성능을 보이는 기존의 역전파 신경회로망(Backpropagation Neural Network)에 인식율 개선을 위하여 퍼지추론시스템을 결합한 형태로 구현되었다. 실험결과 신경망만을 사용한 경우에 비하여 인식율이 향상됨을 연구하였다.

  • PDF

Design of Emotion Recognition Model Using fuzzy Logic (퍼지 로직을 이용한 감정인식 모델설계)

  • 김이곤;배영철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.268-282
    • /
    • 2000
  • Speech is one of the most efficient communication media and it includes several kinds of factors about speaker, context emotion and so on. Human emotion is expressed in the speech, the gesture, the physiological phenomena(the breath, the beating of the pulse, etc). In this paper, the method to have cognizance of emotion from anyone's voice signals is presented and simulated by using neuro-fuzzy model.

  • PDF

Binary clustering network for recognition of keywords in continuous speech (연속음성중 키워드(Keyword) 인식을 위한 Binary Clustering Network)

  • 최관선;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.870-876
    • /
    • 1993
  • This paper presents a binary clustering network (BCN) and a heuristic algorithm to detect pitch for recognition of keywords in continuous speech. In order to classify nonlinear patterns, BCN separates patterns into binary clusters hierarchically and links same patterns at root level by using the supervised learning and the unsupervised learning. BCN has many desirable properties such as flexibility of dynamic structure, high classification accuracy, short learning time, and short recall time. Pitch Detection algorithm is a heuristic model that can solve the difficulties such as scaling invariance, time warping, time-shift invariance, and redundance. This recognition algorithm has shown recognition rates as high as 95% for speaker-dependent as well as multispeaker-dependent tests.

  • PDF