• Title/Summary/Keyword: Speaker identification systems

Search Result 28, Processing Time 0.032 seconds

Forensic Automatic Speaker Identification System for Korean Speakers (과학수사를 위한 한국인 음성 특화 자동화자식별시스템)

  • Kim, Kyung-Wha;So, Byung-Min;Yu, Ha-Jin
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.95-101
    • /
    • 2012
  • In this paper, we introduce the automatic speaker identification system 'SPO(Supreme Prosecutors Office) Verifier'. SPO Verifier is a GMM(Gaussian mixture model)-UBM(universal background model) based automatic speaker recognition system and has been developed using Korean speakers' utterances. This system uses a channel compensation algorithm to compensate recording device characteristics. The system can give the users the ability to manage reference models with utterances from various environments to get more accurate recognition results. To evaluate the performance of SPO Verifier on Korean speakers, we compared this system with one of the most widely used commercial systems in the forensic field. The results showed that SPO Verifier shows lower EER(equal error rate) than that of the commercial system.

Text-independent Speaker Identification Using Soft Bag-of-Words Feature Representation

  • Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.240-248
    • /
    • 2014
  • We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.

Development of Advanced Personal Identification System Using Iris Image and Speech Signal (홍채와 음성을 이용한 고도의 개인확인시스템)

  • Lee, Dae-Jong;Go, Hyoun-Joo;Kwak, Keun-Chang;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.348-354
    • /
    • 2003
  • This proposes a new algorithm for advanced personal identification system using iris pattern and speech signal. Since the proposed algorithm adopts a fusion scheme to take advantage of iris recognition and speaker identification, it shows robustness for noisy environments. For evaluating the performance of the proposed scheme, we compare it with the iris pattern recognition and speaker identification respectively. In the experiments, the proposed method showed more 56.7% improvements than the iris recognition method and more 10% improvements than the speaker identification method for high quality security level. Also, in noisy environments, the proposed method showed more 30% improvements than the iris recognition method and more 60% improvements than the speaker identification method for high quality security level.

Development of a Work Management System Based on Speech and Speaker Recognition

  • Gaybulayev, Abdulaziz;Yunusov, Jahongir;Kim, Tae-Hyong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.89-97
    • /
    • 2021
  • Voice interface can not only make daily life more convenient through artificial intelligence speakers but also improve the working environment of the factory. This paper presents a voice-assisted work management system that supports both speech and speaker recognition. This system is able to provide machine control and authorized worker authentication by voice at the same time. We applied two speech recognition methods, Google's Speech application programming interface (API) service, and DeepSpeech speech-to-text engine. For worker identification, the SincNet architecture for speaker recognition was adopted. We implemented a prototype of the work management system that provides voice control with 26 commands and identifies 100 workers by voice. Worker identification using our model was almost perfect, and the command recognition accuracy was 97.0% in Google API after post- processing and 92.0% in our DeepSpeech model.

The Speaker Identification Using Incremental Learning (Incremental Learning을 이용한 화자 인식)

  • Sim, Kwee-Bo;Heo, Kwang-Seung;Park, Chang-Hyun;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.576-581
    • /
    • 2003
  • Speech signal has the features of speakers. In this paper, we propose the speaker identification system which use the incremental learning based on neural network. Recorded speech signal through the Mic is passed the end detection and is divided voiced signal and unvoiced signal. The extracted 12 order cpestrum are used the input data for neural network. Incremental learning is the learning algorithm that the learned weights are remembered and only the new weights, that is created as adding new speaker, are trained. The architecture of neural network is extended with the number of speakers. So, this system can learn without the restricted number of speakers.

Fast Speaker Identification Using a Universal Background Model Clustering Method (Universal Background Model 클러스터링 방법을 이용한 고속 화자식별)

  • Park, Jumin;Suh, Youngjoo;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.216-224
    • /
    • 2014
  • In this paper, we propose a new method to drastically reduce computational complexity in Gaussian Mixture Model (GMM)-based Speaker Identification (SI). Generally, GMM-based SI systems have very high computational complexity proportional to the length of the test utterance, the number of enrolled speakers, and the GMM size. These make the SI systems difficult to be used in various real applications in spite of their broad applicability. Thus, a trade-off between computational complexity and identification accuracy is considered as a primary issue for practical applications. In order to reduce computational complexity sharply with a little loss of accuracy, we introduce a method based on the Universal Background Model (UBM) clustering approach and then we show that it can be used successfully in real-time applications. In experiments with the proposed algorithm, we obtained a speed-up factor of 6 with a negligible loss of accuracy.

A Study on Speaker Identification Using Hybrid Neural Network (하이브리드 신경회로망을 이용한 화자인식에 관한 연구)

  • Shin, Chung-Ho;Shin, Dea-Kyu;Lee, Jea-Hyuk;Park, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.600-602
    • /
    • 1997
  • In this study, a hybrid neural net consisting of an Adaptive LVQ(ALVQ) algorithm and MLP is proposed to perform speaker identification task. ALVQ is a new learning procedure using adaptively feature vector sequence instead of only one feature vector in training codebooks initialized by LBG algorithm and the optimization criterion of this method is consistent with the speaker classification decision rule. ALVQ aims at providing a compressed, geometrically consistent data representation. It is fit to cover irregular data distributions and computes the distance of the input vector sequence from its nodes. On the other hand, MLP aim at a data representation to fit to discriminate patterns belonging to different classes. It has been shown that MLP nets can approximate Bayesian "optimal" classifiers with high precision, and their output values can be related a-posteriori class probabilities. The different characteristics of these neural models make it possible to devise hybrid neural net systems, consisting of classification modules based on these two different philosophies. The proposed method is compared with LBG algorithm, LVQ algorithm and MLP for performance.

  • PDF

Speaker Identification Using Incremental Learning

  • Kim, Jinsu;Son, Sung-Han;Cho, Byungsun;Park, Kang-Bak;Tsuji, Teruo;Hanamoto, Tsuyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.75.5-75
    • /
    • 2002
  • $\textbullet$ FFT $\textbullet$ Autocorrelation $\textbullet$ Levinson_Durbin resolution $\textbullet$ LP coefficients $\textbullet$ LP cepstral Coefficients $\textbullet$ Incremental Learning

  • PDF

A Realization of Injurious moving picture filtering system with Gaussian Mixture Model and Frame-level Likelihood Estimation (Gaussian Mixture Model과 프레임 단위 유사도 추정을 이용한 유해동영상 필터링 시스템 구현)

  • Kim, Min-Joung;Jeong, Jong-Hyeog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • In this paper, we propose the injurious moving picture filtering system using certain sounds contained in the injurious moving picture to filter injurious moving picture which is distributed without limitation in internet and internet storage space. For this purpose, the Gaussian Mixture Model which can well represent the characteristics of the sound, is used and frame level likelihood estimation is used to calculate the likelihood between filtering target data and the sound models. Also, the pruning method which can real-time proceed by reducing the comparing number of data, is applied for real-time processing, and MWMR method which showed good performance from existing speaker identification, is applied for the distinguish performance of high precision. In the identification experiment result, in case of the frame rate which is the proportion of total frame to high likelihood frame, is set to 50%, identification error rate is 6.06%, and in case of frame rate is set to 60%, error rate is 3.03%. As the result, the proposed system can distinguish between general and injurious moving picture effectively.

GMM-Based Maghreb Dialect Identification System

  • Nour-Eddine, Lachachi;Abdelkader, Adla
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.22-38
    • /
    • 2015
  • While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker's dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.