• Title/Summary/Keyword: Speaker Sound

Search Result 267, Processing Time 0.029 seconds

Transmission Loss Prediction of KHST′s Wall (KHST 차량 벽면의 투과손실값 예측)

  • Kim, Kwanju;Taejung Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.317.2-317
    • /
    • 2002
  • Transmission loss of KHST passenger vehicle was calculated using measured acoustic data: In order to verify the transmission loss results for KHST case, similar experiment was carried out in laboratory condition, which result was compared those by geometric acoustic method. The computational results shows good agreement with the transmission loss magnitude from experiments. This paper also mentions items to obtain more accurate transmission loss values, i. e. how to assure reverberant field condition, the selection of source speaker' location.

  • PDF

Active Audition System based on 2-Dimensional Microphone Array (2차원 마이크로폰 배열에 의한 능동 청각 시스템)

  • Lee, Chang-Hun;Kim, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.175-178
    • /
    • 2003
  • This paper describes a active audition system for robot-human interface in real environment. We propose a strategy for a robust sound localization and for -talking speech recognition(60-300cm) based on 2-dimensional microphone array. We consider spatial features, the relation of position and interaural time differences, and realize speaker tracking system using fuzzy inference profess based on inference rules generated by its spatial features.

  • PDF

Study on Cooling System Characteristics of 400W Active Speaker (400W급 액티브 스피커의 냉각시스템 특성에 관한 연구)

  • Seo, Jae-Hyeong;Bang, You-Ma;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8140-8146
    • /
    • 2015
  • The objective of this study is to experimentally investigate the cooling performance characteristics with the consideration of the temperature variations of the enclosure of the 400W ferrofluid active speaker having both woofer and amplifier heat sinks. In order to do this, the heat sinks for both woofer and amplifier was designed ant applied to 400W ferrofluid active speaker. As a result, the cooling performance of the developed 400W ferrofluid active speaker was improved and the temperature of the enclosure after 120 min at steady state increased by $2.8^{\circ}C$ with the increase of the outdoor temperatures from $25^{\circ}C$ to $29^{\circ}C$. In addition, the overall sound pressure level of the developed 400W ferrofluid active speaker showed 111.8 dB and improved 1.9 dB higher than 109.9 dB of the existed speaker.

Evaluation of Piezoelectric Properties in Pb(Zr1Ti)O3-PVDF Composites for Thick Film Speaker Application (후막 스피커 응용을 위한 Pb(Zr1Ti)O3-PVDF 복합체의 압전 특성 평가)

  • Son Yong-Ho;Kim Sung-Jin;Kim Young-Min;Jeong Joon-Seok;Ryu Sung-Lim;Kweon Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.966-970
    • /
    • 2006
  • We reported on characteristics of the piezoelectric ceramic-polymer composite for the application of the thick-film speaker. The PVDF-PZT composites were fabricated to incorporate the advantages of both ceramic and polymer with various mixing ratios by 3-roll mill mixer. The composite solutions were coated by the conventional screen-printing method on ITO electrode coated PET (Polyethylene terephthalate) polymer film. After depositing the top-electrode of silver-paste, 4 kV/mm of DC field was applied at $120^{\circ}C$ for 30 min to poling the composite films. The value of $d_{33}$ (piezoelectric charge constant) was increased when the PZT weight percent was increased. The maximum value of the $d_{33}$ was 24 pC/N at 70 wt% PZT. But the $g{33}$ (piezoelectric voltage constant) showed the maximum value of $32mV{\cdot}m/N$ at 65 wt% of PZT powder. The SPL (sound pressure level) of the speaker fabricated with the 65:35 composite film was about 68 dB at 1 kHz.

Fabrication of an Ultrasonic Speaker with Piezoelectric Ceramics (압전 세라믹을 이용한 초음파 스피커의 제작)

  • 문창호;안도현;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.18-24
    • /
    • 1999
  • In this paper, we have investigated on the development of ultrasonic speakers that have higher directivity and much wider bandwidth than those of conventional loudspeakers. For optimal structure of speaker, we have analyzed material properties and dimension of the piezoelectric element and the vibrating metal plate, and their support type as well as the housing case. Based on the design, we have fabricated ultrasonic speaker prototypes, measured their performance, and verified validity of the design theory. For higher sound pressure level, the ultrasonic array speaker prototype has been fabricated in the form of an array. The design and fabrication method worked in this paper can be utilized in development of various ultrasonic speakers with higher directivity and broader bandwidth.

  • PDF

Investigation on Vibration Characteristics of Micro Speaker Diaphragms for Various Shape Designs (마이크로 스피커 진동판의 형상설계에 따른 진동특성 고찰)

  • Kim, Kyeong Min;Kim, Seong Keol;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.790-796
    • /
    • 2013
  • Micro-speaker diaphragms play an important role in generating a desired audio response. The diaphragm is generally a circular membrane, and the cross section is a double dome, with an inner dome and an outer dome. To improve the sound quality of the speaker, a number of corrugations may be included in the outer dome region. In this study, the role of these corrugations is investigated using two kinds of finite element method (FEM) calculations. Structural FEM modeling was carried out to investigate the change in stiffness of the diaphragm when the corrugations were included. Modal FEM modeling was then carried out to compare the natural frequencies and the resulting vibrational modes of the plain and corrugated diaphragms. The effects of the corrugations on the vibration characteristics of the diaphragm are discussed.

Convergence research on the speaker's voice perceived by listener, and suggestions for future research application

  • Hahm, SangWoo
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.55-63
    • /
    • 2022
  • Although research on the leader's or speaker's voice has been continuously conducted, existing research has a single point of view. Sound analysis of voice characteristics has been studied from engineering perspectives, and leadership trait theory has been studied from a business perspective. Convergence studies on leader voice and member cognition are being attempted today. Convergence research on voice has a positive effect on refinement of voice analysis, diversification of voice use, and establishment of voice utilization strategy. This study explains the current flow of research on convergence between speaker's voice and listener's perception, and suggests a direction for the future development of voice fusion research. Furthermore, in connection with AI in the 4th industrial age, new attempts for voice research are sought. First, advances in AI focus on strategically generating the voices needed for individual situations. Second, the voice corrected in real time will support the leader and speaker to utilize the desired voice type. Third, voices through AI based on big data will affect the cognition, attitude and behavior of individual listeners who members, customers, and students in more diverse situations. The purpose and significance of this study is to suggest the way to research the leader's voice recognized by members, and to suggest a method that can be applied in various situations.

Fiber Optic Sensor Design for the Monitoring of Structural Sound and Vibration (구조물 음향진동 모니터링을 위한 광섬유 센서 설계)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.81-84
    • /
    • 2007
  • In this paper, fiber optic sound and vibration monitoring sensor which is latticed shape structure based on Sagnac interferometer is fabricated and tested in laboratory conditions. To detect external vibrations surface mounted fibers on the latticed steel wire fence with a dimension of 170cm by 180cm is used. To detect external sound frequency the tightened fiber optic itself wire netting fence with a dimension of 50cm by 50cm is used. Experiments for the detection of the excited vibration and sound signals were performed. A small vibrator induced external vibration signal and it is applied to the latticed structure in the range of 100Hz to several kHz. External sound signal applied to the fiber optic sensor net using non-directional sound speaker. The detected optical signals were compared and analyzed to the detected both accelerometer and microphone signals in the time and frequency domain. Based on the experimental results, distributed fiber optic sensor using Sagnac interferometer detected effectively external vibration and sound signal and had a good performance. This system can be expanded to the monitoring of a significant system and to the structural health monitoring system.

  • PDF

Absolute sound level algorithm for contents platform (콘텐츠 플랫폼 적용을 위한 절대음량 알고리즘)

  • Gyeon, Du-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.424-434
    • /
    • 2020
  • This paper describes an algorithm that calculates Absolute Sound Level (ASL) for contents platform. ASL is a single volume representing individual sound sources and is a concept designed to integrate and utilize the sound level units in digital sound source and physical domain from a speaker in practical areas. For this concept to be used in content platforms and others, it is necessary to automatically derive the ASL without having to go through a hearing of mastering engineers. The key parameters of which a person recognizes the representative sound level of an individual single sound source are the areas of "frequency, maximum energy, energy variation coefficient, and perceived energy distribution," and the ASL was calculated through the normalizing of the weights.

High Directivity Sound Beamforming Algorithm (방향성이 높은 사운드 빔 형성 알고리즘)

  • Kim, Seona-Woo;Hur, Yoo-Mi;Park, Young-Chul;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.24-33
    • /
    • 2010
  • This paper proposes a technique of sound beamforming that can generate high-directive sound beams, and this paper also presents applications of the proposed algorithm to multi-channel 3D sound systems. The proposed algorithm consists of two phases: first, optimum weights maximizing a sound pressure level ratio between the target and control acoustic regions are designed, and later, the directivity of the pre-designed sound beam is iteratively enhanced by modifying the covariance matrix. The proposed method was evaluated under various situations, and the results showed that it could provide more focused sound beams than the conventional methods.