본 논문에서는 GMM-supervector를 특징 파라미터로 하는 SVM 기반 화자 분류에 대해서 실험하였다. 실험을 위한 화자 클러스터를 생성하기 위해서 기존의 SNR 기반 가중치를 반영한 KL거리 기반 화자변화검출을 실행하였다. SVM 기반 화자 분류는 2단계로 이루어져있다. 1단계는 UBM과 화자 모델들간의 SVM 기반 분류를 시행하여 각 클러스터에 화자 정보를 인덱싱한 다음 화자별로 그룹핑한다. 2단계는 화자 클러스터 그룹에 UBM과 화자모델들간의 SVM 기반 분류를 시행한다. SVM의 커널 함수로는 Linear와 RBF를 사용하였다. 실험결과, 1단계에서는 Linear 커널이 화자 클러스터 148개, MDR 0, FAR 47.3, ER 50.7로 좋은 성능으로 보였다. 2단계 실험결과도 Linear 커널이 화자 클러스터 109개, MDR 1.3, FAR 28.4, ER 32.1로 좋은 성능을 보였다.
An automatic speech recognition system is one of the popular research problems. There are many research groups working in this field for different language including Japanese. Japanese vowel recognition is one of important parts in the Japanese speech recognition system. The vowel classification system with the Mamdani fuzzy inference system was developed in this research. We tested our system on the blind test data set collected from one male native Japanese speaker and four male non-native Japanese speakers. All subjects in the blind test data set were not the same subjects in the training data set. We found out that the classification rate from the training data set is 95.0 %. In the speaker-independent experiments, the classification rate from the native speaker is around 70.0 %, whereas that from the non-native speakers is around 80.5 %.
연속적 화자 분류에 있어서 분류 대상이 되는 화자에 대한 정보가 없거나 부족할 경우 정확한 연속적 분류가 어렵다. 이러한 문제를 해결하기 위해 표본 화자모델을 이용하는 방법이 제안되었는데, 이 방법을 이용하면 미리 준비된 화자의 데이터가 없이 화자모델 초기화와 화자분류가 가능해진다. 하지만 여전히 화자모델의 표본을 얻는 방법에 어려움이 따른다. 이 문제를 해결하기 위해 벡터 양자화에서 비롯된 화자 양자화를 제안한다. 유선전화 데이터를 이용한 실험에서 화자 양자화를 이용한 표본 화자모델 방법은 무작위 표본추출 방법을 이용할 경우 보다 25%의 성능 향상을 보였다.
본 연구에서는, VQ(vector quantization)와 모음 인식에 기초한 화자 인식 알고리즘을 제안하고, 기존의 VQ를 사용한 화자 인식 알고리즘과 성능을 비교하였다. 제안된 화자 인식 알고리즘은 모음 분리, 모음 인식 그리고 평균 distortion양을 계산하는 3개의 과정으로 구성되며, 이때 주어진 음성 신호로부터 모음 부분을 분리하기 위해 RMS 에너지, BTR(Back-to-Total cavity volume Ratio) 그리고 SFBR(Signed-Front-to-Back maximum area Ratio)이 라는 3개 의 Parameter를 사용하였다. 입력 음성 신호의 SNR이 20 dB이고 정확한 모음 분리가 수행되었을 때, 제안된 화자 인식 알고리즘의 성능이 기존의VQ를 사용한 화자 인식 알고리즘의 성능보다 대체로 좋았으며, 입력 신호가 전화선을 통과한 신호이고 잡음이 있는 경우에도 유사한 결과를 얻을 수 있었다
문장 종속형 화자 확인시스템을 구현하는데 있어 화자가 발음할 문장의 선정은 화자인식시스템의 성능을 좌우하는 중요한 사항이다. 본 연구에서는 한국어의 음가 분류방식을 이용하여 자음조합체계를 구축하고 이를 웹 기반 화자확인시스템에 적용하여 급격한 화자음성정보의 변화에 대응하는 동시에 최적의 인식성능을 낼 수 있는 자음조합방식을 도출하였다.
다수의 화자가 존재하는 음성에서 "누가 언제 발화했는가?"에 대해 레이블링하는 화자 분할은 발화 중첩 구간에 대한 레이블링과 화자 분할 모델의 최적화를 위해 심층 신경망 기반의 종단 간 방법에 대해 연구되었다. 대부분 심층 신경망 기반의 종단 간 화자 분할 시스템은 음성의 각 프레임에서 발화한 모든 화자의 레이블들을 추정하는 다중 레이블 분류 문제로 분할을 수행한다. 다중 레이블 기반의 화자 분할 시스템은 임계값을 어떤 값으로 설정하는지에 따라 모델의 성능이 많이 달라진다. 본 논문에서는 임계값 없이 화자 분할을 수행할 수 있도록 단일 레이블 분류를 이용한 화자 분할 시스템에 대해 연구하였다. 제안하는 화자 분할 시스템은 기존의 화자 레이블을 단일 레이블 형태로 변환하여 모델의 출력으로부터 레이블을 바로 추정한다. 훈련에서는 화자 레이블 순열을 고려하기 위해 Permutation Invariant Training(PIT) 손실함수와 교차 엔트로피 손실함수를 조합하여 사용하였다. 또한 심층 구조를 갖는 모델의 효과적인 학습을 위해 화자 분할 모델에 잔차 연결 구조를 추가하였다. 실험은 Librispeech 데이터베이스를 이용해 화자 2명에 대한 시뮬레이션 잡음 데이터를 생성하여 사용하였다. Diarization Error Rate(DER) 성능 평가 지수를 이용해 제안한 방법과 베이스라인 모델을 비교 평가했을 때, 제안한 방법이 임계값 없이 분할이 가능하며, 약 20.7 %만큼 향상된 성능을 보였다.
In this paper we use a training algorithm, MCE (Minimum Classification Error), to improve the performance of a text-independent speaker identification system. The MCE training scheme takes account of possible competing speaker hypotheses and tries to reduce the probability of incorrect hypotheses. Experiments performed on a small set speaker identification task show that the discriminant training method using MCE can reduce identification errors by up to 54% over a baseline system trained using Bayesian adaptation to derive GMM (Gaussian Mixture Models) speaker models from a UBM (Universal Background Model).
Farhadipour, Aref;Veisi, Hadi;Asgari, Mohammad;Keyvanrad, Mohammad Ali
ETRI Journal
/
제40권5호
/
pp.643-652
/
2018
Dysarthria is a degenerative disorder of the central nervous system that affects the control of articulation and pitch; therefore, it affects the uniqueness of sound produced by the speaker. Hence, dysarthric speaker recognition is a challenging task. In this paper, a feature-extraction method based on deep belief networks is presented for the task of identifying a speaker suffering from dysarthria. The effectiveness of the proposed method is demonstrated and compared with well-known Mel-frequency cepstral coefficient features. For classification purposes, the use of a multi-layer perceptron neural network is proposed with two structures. Our evaluations using the universal access speech database produced promising results and outperformed other baseline methods. In addition, speaker identification under both text-dependent and text-independent conditions are explored. The highest accuracy achieved using the proposed system is 97.3%.
A novel scheme to measure the speaker information in speech signal is proposed. We develope the theory of quantitative measurement of the speaker characteristics in the information theoretic point of view, and connect it to the classification error rate. Homomorphic analysis based features, such as mel frequency cepstral coefficient (MFCC), linear prediction cepstral coefficient (LPCC), and linear frequency cepstral coefficient (LFCC) are studied to measure speaker specific information contained in those feature sets by computing mutual information. Theories and experimental results provide us quantitative measure of speaker information in speech signal.
This paper describes a speaker adaptation method to improve the recognition performance of MLP(multiLayer Perceptron) based HMM(Hidden Markov Model) speech recognizer. In this method, we use lst-order linear transformation network to fit data of a new speaker to the MLP. Transformation parameters are adjusted by back-propagating classification error to the transformation network while leaving the MLP classifier fixed. The recognition system is based on semicontinuous HMM's which use the MLP as a fuzzy vector quantizer. The experimental results show that rapid speaker adaptation resulting in high recognition performance can be accomplished by this method. Namely, for supervised adaptation, the error rate is signifecantly reduced from 9.2% for the baseline system to 5.6% after speaker adaptation. And for unsupervised adaptation, the error rate is reduced to 5.1%, without any information from new speakers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.