• Title/Summary/Keyword: Spatio-temporal data

Search Result 511, Processing Time 0.027 seconds

An Efficient Event Detection Algorithm using Spatio-Temporal Correlation in Surveillance Reconnaissance Sensor Networks (감시정찰 센서네트워크에서 시공간 연관성를 이용한 효율적인 이벤트 탐지 기법)

  • Yeo, Myung-Ho;Kim, Yong-Hyun;Kim, Hun-Kyu;Lee, Noh-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.913-919
    • /
    • 2011
  • In this paper, we present a new efficient event detection algorithm for sensor networks with faults. We focus on multi-attributed events, which are sets of data points that correspond to interesting or unusual patterns in the underlying phenomenon that the network monitors. Conventional algorithms cannot detect some events because they treat only their own sensor readings which can be affected easily by environmental or physical problem. Our approach exploits spatio-temporal correlation of sensor readings. Sensor nodes exchange a fault-tolerant code encoded their own readings with neighbors, organize virtual sensor readings which have spatio-temporal correlation, and determine a result for multi-attributed events from them. In the result, our proposed algorithm provides improvement of detecting multi-attributed events and reduces the number of false-negatives due to negative environmental effects.

The Characteristics and Spatio-temporal Distribution of Fish Schools during Summer in the Marine Ranching Area (MRA) of Yeosu using Acoustic Data (음향 자료를 이용한 하계 여수 바다목장 해역에서 어군의 시·공간 분포와 특징)

  • Yoon, Eun-A;Hwang, Doo-Jin;Kim, Ho-Sang;Lee, Kyung-Seon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.283-291
    • /
    • 2014
  • This study assessed dominant fish species, and the characteristics and spatio-temporal distribution of fish schools using acoustic and catch data in the marine ranching area (MRA) of Yeosu in July and August 2013. Acoustic data were collected using a 200-kHz dual beam transducer, and catch data were analyzed through auction data generated by a set net installed in the MRA. More fish schools were detected by acoustic methods in July than in August. The temporal distribution of fish schools differed between July and August, but, many schools demonstrated a high mean volume scattering strength (SV) around artificial reefs. Additionally, the characteristics of fish schools detected by echograms and the species caught by set nets differed between July and August. The dominant fish species were Engraulis japonicus, Pampus argenteus, Scomberomorus niphonius, and Pampus echinogaster in July, and approximately 85% of the catch in August consisted of Scomberomorus niphonius. Therefore, hydro-acoustic tools are useful for estimating fish school characteristics in large areas over a short period. To determine species, it is important to conduct net sampling surveys during the acoustic surveys. However, if a database of fish school characteristics organized by species is constructed through continuous study, it could be possible to identify fish species through acoustic methods alone.

BoF based Action Recognition using Spatio-Temporal 2D Descriptor (시공간 2D 특징 설명자를 사용한 BOF 방식의 동작인식)

  • KIM, JinOk
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.21-32
    • /
    • 2015
  • Since spatio-temporal local features for video representation have become an important issue of modeless bottom-up approaches in action recognition, various methods for feature extraction and description have been proposed in many papers. In particular, BoF(bag of features) has been promised coherent recognition results. The most important part for BoF is how to represent dynamic information of actions in videos. Most of existing BoF methods consider the video as a spatio-temporal volume and describe neighboring 3D interest points as complex volumetric patches. To simplify these complex 3D methods, this paper proposes a novel method that builds BoF representation as a way to learn 2D interest points directly from video data. The basic idea of proposed method is to gather feature points not only from 2D xy spatial planes of traditional frames, but from the 2D time axis called spatio-temporal frame as well. Such spatial-temporal features are able to capture dynamic information from the action videos and are well-suited to recognize human actions without need of 3D extensions for the feature descriptors. The spatio-temporal BoF approach using SIFT and SURF feature descriptors obtains good recognition rates on a well-known actions recognition dataset. Compared with more sophisticated scheme of 3D based HoG/HoF descriptors, proposed method is easier to compute and simpler to understand.

Hierarchical Compression Technique for Reflectivity Data of Weather Radar (기상레이더 반사도 자료의 계층적 압축 기법)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lim, Sanghun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.793-805
    • /
    • 2015
  • Nowadays the amount of data obtained from advanced weather radars is growing to provide higher spatio-temporal resolution. Accordingly radar data compression is important to use limited network bandwidth and storage effectively. In this paper, we proposed a hierarchical compression method for weather radar data having high spatio-temporal resolution. The method is applied to radar reflectivity and evaluated in aspects of accuracy of quantitative rainfall intensity. The technique provides three compression levels from only 1 compressed stream for three radar user groups-signal processor, quality controller, weather analyst. Experimental results show that the method has maximum 13% and minimum 33% of compression rates, and outperforms 25% higher than general compression technique such as gzip.

A Study on Recognition of Spoken Numbers Using Spatio-Tempora1 Pattern Recognizer (시공간 패턴인식 신경망에 의한 단어 인식에 관한 연구)

  • Park, Kyoung-Cheol;Kim, Hun-Kee;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.495-497
    • /
    • 1993
  • This paper presents spoken numbers recognition method using a spatio-temporal network This network is efficient in processing the spectrum sequences of speech patterns as spatio-temporal patterns. The number of windows and channels is experimentally determined. The recognition rate has been improved by experiments done on various parameters. The test data is collected form 10 numbers spoken by 2 male and female speakers. A recognition rate of 80% was obtained on a test set of 50 words.

  • PDF

Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (I) Soil Moisture (원격탐사자료를 이용한 시⋅공간적으로 분포되어 있는 토양수분산정 및 가뭄평가:(I) 토양수분)

  • Shin, Yongchul;Choi, Kyung-Sook;Jung, Younghun;Yang, Jae E.;Lim, Kyoung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.60-69
    • /
    • 2016
  • In this study, we estimated root zone soil moisture dynamics using remotely sensed (RS) data. A soil moisture data assimilation scheme was used to derive the soil and root parameters from MODerate resolution Imaging Spectroradiometer (MODIS) data. Based on the estimated soil/root parameters and weather forcings, soil moisture dynamics were simulated at spatio-temporal scales based on a hydrological model. For calibration/validation, the Little Washita (LW13) in Oklahoma and Chungmi-cheon/Seolma-cheon sites were selected. The derived water retention curves matched the observations at LW 13. Also, the simulated soil moisture dynamics at these sites was in agreement with the Time Domain Reflectrometry (TDR)-based measurements. To test the applicability of this approach at ungauged regions, the soil/root parameters at the pixel where the Seolma-cheon site is located were derived from the calibrated MODIS-based (Chungmi-cheon) soil moisture data. Then, the simulated soil moisture was validated using the measurements at the Seolma-cheon site. The results were slightly overestimated compared to the measurements, but these findings support the applicability of this proposed approach in ungauged regions with predictable uncertainties. These findings showed the potential of this approach in Korea. Thus, this proposed approach can be used to assess root zone soil moisture dynamics at spatio-temporal scales across Korea, which comprises mountainous regions with dense forest.

Path Selection and Summarization of User's Moving Path for Spatio-Temporal Location Prediction (시공간 위치 예측을 위한 사용자 이동 경로의 선택과 요약 방법)

  • Yoon, Tae-Bok;Lee, Dong-Hoon;Jung, Je-Hee;Lee, Jee-Hyong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.298-303
    • /
    • 2008
  • User adaptive services have been important features in many applications. To provide such services, various techniques with various kinds of data are being used. In this paper, we propose a method to analyze user's past moving paths for predicting the goal position and the path to the goal by observing the user's current moving path. We develop a spatio-temporal similarity measure between paths. We choose a past path which is the most similar to the current path using the similarity. Based on the chosen path, user's spatio-temporal position is estimated. Through experiments we confirm this method is useful and effective.

  • PDF

Spatio-Temporal Index Structure for Trajectory Queries of Moving Objects in Video (비디오에서 이동 객체의 궤적 검색을 위한 시공간 색인구조)

  • Lee, Nak-Gyu;Bok, Kyoung-Soo;Yoo, Jae-Soo;Cho, Ki-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.69-82
    • /
    • 2004
  • A moving object has a special feature that it's spatial location, shape and size are changed as time goes. These changes of the object accompany the continuous movement that is called the trajectory. In this paper, we propose an index structure that users can retrieve the trajectory of a moving object with the access of a page. We also propose the multi-complex query that is a new query type for trajectory retrieval. In order to prove the excellence of our method, we compare and analyze the performance for query time and storage space through experiments in various environments. It is shown that our method outperforms the existing index structures when processing spatio-temporal trajectory queries on moving objects.

Spatio-temporal protocol for power-efficient acquisition wireless sensors based SHM

  • Bogdanovic, Nikola;Ampeliotis, Dimitris;Berberidis, Kostas;Casciat, Fabio;Plata-Chaves, Jorge
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.1-16
    • /
    • 2014
  • In this work, we address the so-called sensor reachback problem for Wireless Sensor Networks, which consists in collecting the measurements acquired by a large number of sensor nodes into a sink node which has major computational and power capabilities. Focused on applications such as Structural Health Monitoring, we propose a cooperative communication protocol that exploits the spatio-temporal correlations of the sensor measurements in order to save energy when transmitting the information to the sink node in a non-stationary environment. In addition to cooperative communications, the protocol is based on two well-studied adaptive filtering techniques, Least Mean Squares and Recursive Least Squares, which trade off computational complexity and reduction in the number of transmissions to the sink node. Finally, experiments with real acceleration measurements, obtained from the Canton Tower in China, are included to show the effectiveness of the proposed method.