• Title/Summary/Keyword: Spatio-temporal Resolution

Search Result 76, Processing Time 0.03 seconds

Research on the Spatio-temporal Distribution Pattern of Temperature Using GIS in Korea Peninsular (GIS를 이용한 한반도 기온의 시·공간적 분포패턴에 관한 연구)

  • KIM, Nam-Shin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2008
  • This study is to construe spatio-temporal characteristics of temperature in cities and changes of climatical regions in analyzing a change of Korea Peninsular climate. We used daily mean air temperature data which was collected in South and North Korea for the past 34 years from 1974 to 2007. We created temperature map of 500m resolution using Inverse Distance Weight in application with adiabatic lapse rate per month in linear relation with height and temperature. In the urbanization area, the data analyzed population in comparison with temperature changes by the year. An annual rising rate of temperature was calculated $0.0056^{\circ}C$, and the temperature was increased $2.14^{\circ}C$ from 1974 to 2107. The south climate region in Korea by the Warmth index was expanded to the middle climate region by the latitude after 1990s. A rise of urban area in mean temperature was $0.5-1.2^{\circ}C$, Seoul, metropolitan and cities which were high density of urbanization and industrialization with the population increase between 1980s and 1990s. In case of North Korea, Cities were Pyeongyang, Anju, Gaecheon, Hesan. A rise in cities areas in mean temperature has influence on vegetation, especially secondary growth such as winter buds of pine trees appears built-up area and outskirts in late Autumn. Finally, nowaday we confront diverse natural events over climatical changes, We need a long-term research to survey and analyze an index on the climatical changes to present a systematic approach and solution in the future.

Image Registration of Drone Images through Association Analysis of Linear Features (선형정보의 연관분석을 통한 드론영상의 영상등록)

  • Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.441-452
    • /
    • 2017
  • Drones are increasingly being used to investigate disaster damage because they can quickly capture images in the air. It is necessary to extract the damaged area by registering the drones and the existing ortho-images in order to investigate the disaster damage. In this process, we might be faced the problem of registering two images with different time and spatial resolution. In order to solve this problem, we propose a new methodology that performs initial image transformation using line pairs extracted from images and association matrix, and final registration of images using linear features to refine the initial transformed result. The applicability of the newly proposed methodology in this study was evaluated through experiments using artifacts and the natural terrain areas. Experimental results showed that the root mean square error of artifacts and the natural terrain was 1.29 pixels and 4.12 pixels, respectively, and relatively high accuracy was obtained in the region with artifacts extracted a lot of linear information.

Spatio-temporal Change Analysis of Ammonia Emission Estimation for Fertilizer Application Cropland using High-resolution Farmland Data (고해상도 농경지 데이터를 이용한 비료사용 농경지의 암모니아 배출량의 시공간적 변화 분석)

  • Park, Jinseon;Lee, Se-Yeon;Hong, Se-Woon;Na, Ra;Oh, Yungyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.33-41
    • /
    • 2021
  • Ammonia emission from the agricultural sector contributes almost 78% of total ammonia emission in Korea. The current ammonia emission estimation method from fertilizer application has high uncertainty and needs to be improved. In this study, we propose an improvement method for estimating the amount of ammonia emission from agricultural land with improved spatiotemporal resolution using Farm Manager Registration Information System and criteria for the fertilizer. We calculated ammonia emissions by utilizing the 2020 cultivation area provided by Farm Manager Registration Information System for 55 kinds of upland crops cultivated in the field area of the farmland. As a result, soybeans were the most cultivated field crop in 2020, and the area of cultivated land was surveyed at about 77,021 ha, followed by sweet potatoes 22,057 ha, garlic 20004 ha, potatoes 17,512 ha, and corn 16,636 ha. The month with the highest ammonia emissions throughout the year was calculated by emitting 590.01 ton yr-1 in May, followed by 486.55 ton yr-1 in March. Hallim-eup in Jeju showed the highest ammonia emission at 117.50 ton yr-1.

A Comparison of Pan-sharpening Algorithms for GK-2A Satellite Imagery (천리안위성 2A호 위성영상을 위한 영상융합기법의 비교평가)

  • Lee, Soobong;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.275-292
    • /
    • 2022
  • In order to detect climate changes using satellite imagery, the GCOS (Global Climate Observing System) defines requirements such as spatio-temporal resolution, stability by the time change, and uncertainty. Due to limitation of GK-2A sensor performance, the level-2 products can not satisfy the requirement, especially for spatial resolution. In this paper, we found the optimal pan-sharpening algorithm for GK-2A products. The six pan-sharpening methods included in CS (Component Substitution), MRA (Multi-Resolution Analysis), VO (Variational Optimization), and DL (Deep Learning) were used. In the case of DL, the synthesis property based method was used to generate training dataset. The process of synthesis property is that pan-sharpening model is applied with Pan (Panchromatic) and MS (Multispectral) images with reduced spatial resolution, and fused image is compared with the original MS image. In the synthesis property based method, fused image with desire level for user can be produced only when the geometric characteristics between the PAN with reduced spatial resolution and MS image are similar. However, since the dissimilarity exists, RD (Random Down-sampling) was additionally used as a way to minimize it. Among the pan-sharpening methods, PSGAN was applied with RD (PSGAN_RD). The fused images are qualitatively and quantitatively validated with consistency property and the synthesis property. As validation result, the GSA algorithm performs well in the evaluation index representing spatial characteristics. In the case of spectral characteristics, the PSGAN_RD has the best accuracy with the original MS image. Therefore, in consideration of spatial and spectral characteristics of fused image, we found that PSGAN_RD is suitable for GK-2A products.

Statistically Analyzed Effects of Coal-Fired Power Plants in West Coast on the Surface Air Pollutants over Seoul Metropolitan Area (통계적 기법을 활용한 서해안 화력발전소 오염물질 배출에 따른 수도권 지표면 대기오염농도 영향의 분석)

  • Ju, Jaemin;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.549-560
    • /
    • 2019
  • The effects of the coal-fired power plant emissions, as the biggest point source of air pollutants, on spatiotemporal surface air pollution over the remote area are investigated in this study, based on a set of date selection and statistical technique to consider meteorological and geographical effects in the emission-concentration (source-receptor) relationship. We here proposed the sophisticated technique of data processing to separate and quantify the effects. The data technique comprises a set of data selection and statistical analysis procedure that include data selection criteria depending on meteorological conditions and statistical methods such as Kolmogorov-Zurbenko filter (K-Z filter) and empirical orthogonal function (EOF) analysis. The data selection procedure is important for filtering measurement data to consider the meteorological and geographical effects on the emission-concentration relationship. Together with meteorological data from the new high resolution ECMWF reanalysis 5 (ERA5) and the Korea Meteorological Administration automated surface observing system, air pollutant emission data from the telemonitoring system (TMS) of Dangjin and Taean power plants as well as spatio-temporal air pollutant concentrations from the air quality monitoring system are used for 4 years period of 2014-2017. Since all the data used in this study have the temporal resolution of 1 hour, the first EOF mode of spatio-temporal changes in air pollutant concentrations over the Seoul metropolitan area (SMA) due to power plant emission have been analyzed to explain over 97% of total variability under favorable meteorological conditions. It is concluded that SO2, NO2, and PM10 concentrations over the SMA would be decreased by 0.468, 1.050 ppb, and 2.045 ㎍ m-3 respectively if SO2, NO2, and TSP emissions from Dangjin power plant were reduced by 10%. In the same way, the 10% emission reduction in Taean power plant emissions would cause SO2, NO2, and PM10 decreased by 0.284, 0.842 ppb, and 1.230 ㎍ m-3 over the SMA respectively. Emissions from Dangjin power plant affect air pollution over the SMA in higher amount, but with lower R value, than those of Taean under the same meteorological condition.

Evaluation of MODIS NDVI for Drought Monitoring : Focused on Comparison of Drought Index (가뭄모니터링을 위한 MODIS NDVI의 활용성 평가: 가뭄지수와의 비교를 중심으로)

  • Park, Jung-Sool;Kim, Kyung-Tak
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.117-129
    • /
    • 2009
  • South Korea has been undergoing spring drought periodically and diverse researches using vegetation index have been carried out to monitor spring droughts. The strength of the vegetation index-based drought monitoring is that the monitoring method enables efficient spatio-temporal grasp of changes in drought events. According to the development of low resolution satellite images such as MODIS, which are characterized by outstanding temporal resolution, the use of the method is expected to increase. Drought analysis using vegetation index considered only meteorological factor as a cause that affects vitality of vegetation. But many indirect and direct factors affect vegetation stress, So many uncertainties are involved in such method of analysis. To secure objectivity of drought analysis that uses vegetation index it is therefore necessary to compare the method with most representative drought analysis tools that are used for drought management. In this study, PDSI and SPI which a meteorological drought index that quantifies drought and that is used as a basic index for drought monitoring and MODIS NDVI are compared to propose correlation among them and to show usefulness of drought assessment that uses vegetation index. This study shows changing patterns of NDVI and SPI 6-month are similar and correlation between NDVI and SPI was highest in inland vegetation cover.

  • PDF

A High-resolution Numerical Simulation and Evaluation of Oak Pollen Dispersion Using the CMAQ-pollen Model (CMAQ-pollen 모델을 이용한 참나무 꽃가루 확산 고해상도 수치모의 및 검증)

  • Oh, Inbo;Kim, Kyu Rang;Bang, Jin-Hee;Lim, Yun-Kyu;Cho, Changbum;Oh, Jae-Won;Kim, Yangho;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.31-44
    • /
    • 2017
  • The aim of this study is to evaluate the accuracy and variability of the oak pollen concentrations over the Seoul metropolitan region (SMR) simulated by the Community Multiscale Air Quality (CMAQ)-based pollen dispersion model, which is the CMAQ-pollen model integrated with the improved oak pollen emission model(PEM-oak). The PEM-oak model developed is based on hourly emission flux parameterization that includes the effects of plant-specific release, meteorological adjustment, and diurnal variations of oak pollen concentrations. A 33 day-run for oak pollen simulation was conducted by the CMAQ-pollen model with a 3 km spatial resolution for the SMR during the 2014 spring pollen season. Modeled concentrations were evaluated against the hourly measurements at three Burkard sampling sites. Temporal variations of oak concentrations were largely well represented by the model, but the quantitative difference between simulations and measurements was found to be significant in some periods. The model results also showed that large variations in oak pollen concentrations existed in time and space and high concentrations in the SMR were closely associated with the regional transport under strong wind condition. This study showed the effective application of the CMAQ-pollen modeling system to simulate oak pollen concentration in the SMR. Our results could be helpful in providing information on allergenic pollen exposure. Further efforts are needed to further understand the oak pollen release characteristics such as interannual variation of the oak pollen productivity and its spatio-temporal flowering timing.

On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning (근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여)

  • Park, Juhan;Kang, Minseok;Cho, Sungsik;Sohn, Seungwon;Kim, Jongho;Kim, Su-Jin;Lim, Jong-Hwan;Kang, Mingu;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.251-267
    • /
    • 2021
  • Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.

Evaluation of Hydrometeorological Components Simulated by Water and Energy Balance Analysis (물수지와 에너지수지 해석에 따른 수문기상성분 평가)

  • Ji, Hee Sook;Lee, Byong Ju;Nam, Kyung Yeub;Lee, Chul Kyu;Jung, Hyun Sook
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.25-35
    • /
    • 2014
  • The objective of this study is to evaluate TOPLATS land surface model performance through comparison of results of water and energy balance analysis. The study area is selected Nakdong river basin and high resolution hydrometeorological components of which spatio-temporal resolution is 1 hr and 1 km are simulated during 2003 to 2013. The simulated daily and monthly depth of flows are well fitted with the observed one on Andong and Hapcheon dam basin. In results of diurnally analysis of energy components, change pattern throughout the day of net radiation, latent heat, sensible heat, and ground heat under energy balance analysis have higher accuracy than ones under water balance analysis at C3 and C4 sites. Especially, root mean square errors of net radiation and latent heat at C4 site are shown very low as 22.18 $W/m^2$ and 7.27 $W/m^2$, respectively. Mean soil moisture and evapotranspiration in summer and winter are simulated as 36.80%, 33.08% and 222.40 mm, 59.95 mm, respectively. From this result, when we need high resolution hydrometeorological components, energy balance analysis is more reasonable than water balance analysis. And this results will be used for monitor and forecast of weather disaster like flood and draught using spatial hydrometeorological information.

Generation of radar rainfall data for hydrological and meteorological application (II) : radar rainfall ensemble (수문기상학적 활용을 위한 레이더 강우자료 생산(II) : 레이더 강우앙상블)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Jang, Sang-Min;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • A recent increase in extreme weather events and flash floods associated with the enhanced climate variability results in an increase in climate-related disasters. For these reasons, various studies based on a high resolution weather radar system have been carried out. The weather radar can provide estimates of precipitation in real-time over a wide area, while ground-based rain gauges only provides a point estimate in space. Weather radar is thus capable of identifying changes in rainfall structure as it moves through an ungauged basin. However, the advantage of the weather radar rainfall estimates has been limited by a variety of sources of uncertainty in the radar reflectivity process, including systematic and random errors. In this study, we developed an ensemble radar rainfall estimation scheme using the multivariate copula method. The results presented in this study confirmed that the proposed ensemble technique can effectively reproduce the rainfall statistics such as mean, variance and skewness (more importantly the extremes) as well as the spatio-temporal structure of rainfall fields.