KSII Transactions on Internet and Information Systems (TIIS)
/
제3권5호
/
pp.527-547
/
2009
Moving object management is widely used in traffic, logistic and data mining applications in ubiquitous environments. It is required to analyze spatio-temporal data and trajectories for moving object management. In this paper, we proposed a novel index structure for spatio-temporal aggregation of trajectory in a constrained network, named aCN-RB-tree. It manages aggregation values of trajectories using a constraint network-based index and it also supports direction of trajectory. An aCN-RB-tree consists of an aR-tree in its center and an extended B-tree. In this structure, an aR-tree is similar to a Min/Max R-tree, which stores the child nodes' max aggregation value in the parent node. Also, the proposed index structure is based on a constrained network structure such as a FNR-tree, so that it can decrease the dead space of index nodes. Each leaf node of an aR-tree has an extended B-tree which can store timestamp-based aggregation values. As it considers the direction of trajectory, the extended B-tree has a structure with direction. So this kind of aCN-RB-tree index can support efficient search for trajectory and traffic zone. The aCN-RB-tree can find a moving object trajectory in a given time interval efficiently. It can support traffic management systems and mining systems in ubiquitous environments.
대부분의 시공간 데이타베이스 연구들은 색인 분야에서 진행되었다. 그러나, 색인 연구들은 시공간 색인 유지를 위해서 필요한 엄청난 오버헤드의 고려 없이, 색인 생성 후의 빠른 질의 처리에 초점이 맞추어져 있다. 이 논문에서, 우리는 이동체들의 갱신들을 시공간 색인에 반영하기 위해서 필요한 디스크 액세스 수를 줄이는 효율적인 갱신 관리 방법을 제안한다. 객체의 움직임을 잘 표현할 수 있는 현실적인 갱신 패턴을 고려하여 자주 갱신되는 소수의 객체들을 유지할 수 있는 메모리 구조를 제안한다. 실질적인 갱신 패턴을 고려한 실험 환경에서, 우리의 방법은 기존 색인들의 일반적인 갱신 방법보다 약 40%의 디스크 액세스 수를 줄인다.
이동 객체는 시간이 변화함에 따라 공간적인 위치나 모양, 크기 등이 변화하는 특징을 가지고 있다. 이런 객체의 변화는 연속적인 움직임을 수반하고 있는데, 이것을 궤적이라 한다. 본 논문에서는 한번의 노드 접근으로 이동 객체의 궤적을 검색할 수 있는 색인구조를 제안한다. 또한 시공간 범위검색은 물론 궤적검색에 효율적인 다중복합 검색을 제안한다. 제안된 방법의 우수성을 보이기 위해 실험을 통하여 검색시간과 저장공간에 대한 성능을 여러 환경에서 비교 분석하여 기존의 색인구조들에 비해 이동 객체의 시공간 궤적검색이 우수함을 보인다.
Li Jing Jing;Lee Dong-Wook;You Byeong-Seob;Oh Young-Hwan;Bae Hae-Young
한국멀티미디어학회논문지
/
제9권12호
/
pp.1529-1541
/
2006
Moving objects have been widely employed in traffic and logistic applications. Spatio-temporal aggregations mainly describe the moving object's behavior in the spatial data warehouse. The previous works usually express the object moving in some certain region, but ignore the object often moving along as the trajectory. Other researches focus on aggregation and comparison of trajectories. They divide the spatial region into units which records how many times the trajectories passed in the unit time. It not only makes the storage space quite ineffective, but also can not maintain spatial data property. In this paper, a spatio-temporal aggregation index structure for moving object trajectory in constrained network is proposed. An extended B-tree node contains the information of timestamp and the aggregation values of trajectories with two directions. The network is divided into segments and then the spatial index structure is constructed. There are the leaf node and the non leaf node. The leaf node contains the aggregation values of moving object's trajectory and the pointer to the extended B-tree. And the non leaf node contains the MBR(Minimum Bounding Rectangle), MSAV(Max Segment Aggregation Value) and its segment ID. The proposed technique overcomes previous problems efficiently and makes it practicable finding moving object trajectory in the time interval. It improves the shortcoming of R-tree, and makes some improvement to the spatio-temporal data in query processing and storage.
최근 위치기반 기술의 급속한 발전으로 인하여 이동 객체를 효율적으로 관리하기 위한 색인 구조의 필요성이 증가하고있다. 하지만, 기존에 제안된 색인 구조들은 이동 객체의 계속되는 위치 이동으로 인해 색인의 변경이 발생하고 색인의 빈번한 변경으로 전체적인 색인의 성능이 저하된다. 본 논문에서는 KOB-트리를 기반으로 하는 시공간 색인 구조인 TPKDB-트리를 제안한다. 제안하는 색인 구조는 갱신 비용을 최소화하여 이동 객체 검색의 효율성을 증가시키고 이동 객체를 선형함수로 표현함으로서 불필요한 갱신을 줄이는 방법을 제안한다. 그리고 노드 내에 포함되어 있는 이동 객체의 변화를 시간에 대한 파라미터로 유지함으로서 효율적으로 이동 객체의 미래 위치 검색을 지원한다. 또한, 공간활용도를 최대화하기 위한 새로운 갱신 및 분할 기법을 제안한다. 제안하는 색인 구조의 우수성을 입증하기 위해 다양한 실험을 통해 성능 평가를 수행한다.
Communications for Statistical Applications and Methods
/
제30권2호
/
pp.119-133
/
2023
With the rapid growth of the economy and fossil fuel consumption, the concentration of air pollutants has increased significantly and the air pollution problem is no longer limited to small areas. We conduct statistical analysis with the actual data related to air quality that covers the entire of South Korea using R and Python. Some factors such as SO2, CO, O3, NO2, PM10, precipitation, wind speed, wind direction, vapor pressure, local pressure, sea level pressure, temperature, humidity, and others are used as covariates. The main goal of this paper is to predict air quality index (AQI) spatio-temporal data. The observations of spatio-temporal big datasets like AQI data are correlated both spatially and temporally, and computation of the prediction or forecasting with dependence structure is often infeasible. As such, the likelihood function based on the spatio-temporal model may be complicated and some special modelings are useful for statistically reliable predictions. In this paper, we propose several methods for this big spatio-temporal AQI data. First, random effects with spatio-temporal basis functions model, a classical statistical analysis, is proposed. Next, neural networks model, a deep learning method based on artificial neural networks, is applied. Finally, random forest model, a machine learning method that is closer to computational science, will be introduced. Then we compare the forecasting performance of each other in terms of predictive diagnostics. As a result of the analysis, all three methods predicted the normal level of PM2.5 well, but the performance seems to be poor at the extreme value.
교통 관리 시스템과 같은 응용에서는 공간 데이타 웨어하우스의 공간 계층을 이용한 분석을 수행하는데, 이러한 분석에서는 주로 단순한 집계정보만을 요구한다. 공간 계층 기반의 집계정보 제공을 위하여 기존의 연구들은 공간 인덱스를 사용한 해결방법을 제시하였는데, 대부분의 연구들은 공간 인덱스 중 가장 널리 이용되는 R-tree를 확장한 방법을 이용하였다. 그러나 단순히 현재 집계 정보만을 제공하여 수년에 걸친 분석을 요구하는 교통 정책에 대하여 의사결정을 지원할 수 없었다. 본 논문에서는 과거의 집계정보까지 관리할 수 있는 aR-tree(Aggregation R-tree)기반의 하이브리드 인덱스를 제안한다. 제안 기법은 aR-tree를 이용하여 공간 계층과 현재시점의 집계정보를 제공하며, 시간 구조체를 이용한 정렬 해쉬 테이블로 시간 계층과 과거의 집계정보를 제공한다. 따라서 제안기법은 시공간 분석을 통한 효율적인 의사결정을 지원하며, 이는 현재의 교통 분석 및 과거를 통한 교통 정책 결정을 가능하게 한다.
시공간 데이타베이스는 최근에 많은 주목을 받았지만, 영역 합 질의에 대한 연구는 그 중요성에 비하여 많이 부족하다. 영역 합 질의를 처리하기 위하여, 많은 양의 데이타에 대한 직접적인 접근은 엄청난 계산 비용을 야기하기 때문에, 최근에 기존 색인 기법을 활용한 materialization 방법이 제안되었다. 간단하면서 효과적인 방법은 시공간 조건을 가지는 윈도우 질의를 효율적인 처리하는 MVR-tree에 materialization 방법을 적용하는 것이다. 그러나, MVR-tree는 노드들 사이의 존재하는 원형 경로 때문에, 중간 노드에 미리 계산된 합을 유지하는 것이 불가능하다. 다른 색인 구조들에 기초한 집합적 구조(aggregate structures)는 만족스러운 질의 성능을 제공하지 못 한다. 본 논문에서는 적응적 분할 기법을 사용하는 새로운 색인 기법(Adaptive Partitioned Aggregate R-Tree, APART)과 다양한 환경에서 영역합 질의를 효율적으로 처리하는 질의 처리 알고리즘을 제안한다. 실험 결과는 APART의 성능이 다양한 상황에서 기존의 집합적 색인 기법들보다 2배 이상 우월하다는 것을 보여준다.
유비쿼터스 컴퓨팅 및 모바일 기술의 발달에 따라 위치 기반 서비스의 사용이 확대되어 가고 있고 모바일 전자 거래 환경에서 가장 주요한 서비스로 자리 잡고 있다. 하지만, 이와 함께 개인의 위치가 추적되고 노출됨에 의하여 사생활 침해와 같은 문제점들도 대두되고 있다. 본 연구는 개인의 위치를 노출시키지 않고도 시공간 질의를 처리하기 위한 새로운 시공 간 질의 처리 기법을 제안한다. 기존의 사용자 위치 은폐 기술은 사용자의 식별자를 감추거나 위치를 정적인 4분 트리나 격자 구조를 이용하여 은폐하는 방법을 사용하였다. 격자를 이용한 위치 은폐는 단순히 사용자의 식별자를 감추는 방법에 비해서는 우수한 방법이지만 미리 정해진 격자의 크기에 의해 위치를 은폐하므로 객체의 위치 분포에 따라 실제보다 불필요하게 많은 오차를 포함하게 되어 질의 성능이 저하되는 문제점을 지닌다. 본 연구에서는 시공간 질의 처리에 널리 사용되는 R-트리를 이용하여 위치 은폐를 수행하는 기법을 제안한다. R-트리의 노드는 기본적으로 최소 객체 개수를 보장하므로 R-트리의 MBR을 은폐된 위치로 직접 사용하면 위치 분포에 보다 능동적으로 대처할 수 있다. 본 연구는 다양한 실험 을 통하여 R-트리에 기반한 위치 은폐가 기존의 기법들에 비하여 우수한 성능을 보임을 증명하였다.
최근 시공간 데이타에 대한 OLAP연산 효율을 증가시키기 위한 여러 가지 연구들이 행하여지고 있다. 이들 연구의 대부분은 다중트리구조에 기반하고 있다. 다중트리구조는 공간차원을 색인하기 위한 하나의 R-tree와 시간차원을 색인하기 위한 다수의 B-tree로 이루어져 있다. 하지만, 이러한 다중트리구조는 높은 유지비용과 불충분한 질의 처리 효율로 인해 현실적으로 시공간 OLAP연산에 적용하기에는 어려운 점이 있다. 본 논문에서는 이러한 문제를 근본적으로 개선하기 위한 접근 방법으로서 힐버트큐브(Hilbert Cube, H-Cube)를 제안하고 있다. H-Cube는 집계질의(aggregation query) 처리 효율을 높이기 위해 힐버트 곡선을 이용하여 셀들에게 완전순서(total-order)를 부여하고 있으며, 아울러 전통적인 누적합(prefix-sum) 기법을 함께 적용하고 있다. H-Cube는 대상공간을 일정한 크기의 셀로 나누고 그 셀들을 힐버트 값 순서로 저장한다. 이러한 셀들이 시간순서로 모여 규브형태를 이루게 된다. 또한 H-Cube는 시간의 흐름에 따라 변화되는 지역적인 데이타 편중에 대처하기 위해 적응적으로 셀을 정제한다. H-Cube는 정적인 공간 차원에서 움직이는 짐 객체에 초점을 두고 있는 적웅적이며, 완전순서화되어 있으며, 또한 누적합을 이용한 셀 기반의 색인구조이다. 본 논문에서는 H-Cube의 성능 평가를 위해서 다양한 실험을 하였으며, 그 결과로서 유지비용과 질의 처리 효율성면 모두에서 다중트리구조보다 높은 성능 향상이 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.