• Title/Summary/Keyword: Spatio-temporal Distribution

Search Result 226, Processing Time 0.025 seconds

Selection and Application of Pollinating Insects to Improve Seed Production of Buckwheat in Net House (메밀의 망실재배시 종자생산성 향상을 위한 수분곤충의 선발과 활용법 구명)

  • Kim, Su Jeong;Sohn, Hwang Bae;Nam, Jeong Hwan;Lee, Jong Nam;Suh, Jong Taek;Chang, Dong Chil;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.35 no.1
    • /
    • pp.10-22
    • /
    • 2022
  • This study investigated field data to understand the spatio-temporal distribution of pollinating insects and buckwheat flowers. We set the in-situ observation sites in different locations to get altitude and cropping system distribution data for five years (2016 to 2020) in Korea. Twenty-five different insect species, belonging to 8 orders, were recorded. Over the past five years, species from the orders Diptera and Hymenoptera were the principal visitors. Hymenoptera was mainly represented by honey bees (Apis cerana), while Diptera was represented by bean seed fly (Delia platura) and several other species. Some bees and other Hymenoptera species could, however, act as co-pollinators because of their high relative frequency and activity. Compared with open-field cultivation (conventional), the pollination mediating effect of flies and bees was superior in net house, so the yield was high, and it was also found to be slightly higher in the mixed treatment of flies and bees than in the single treatment. Based on the above results, flies and bees were found to be the most active pollinating insects in buckwheat and it is necessary to actively utilize the selected insects to improve buckwheat productivity. This relationship will be utilized in establishing the system of seed production on pollinating regulation of a primary plant.

Analysis of Impact Climate Change on Extreme Rainfall Using B2 Climate Change Scenario and Extreme Indices (B2 기후변화시나리오와 극한지수를 이용한 기후변화가 극한 강우 발생에 미치는 영향분석)

  • Kim, Bo Kyung;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.23-33
    • /
    • 2009
  • Climate change, abnormal weather, and unprecedented extreme weather events have appeared globally. Interest in their size, frequency, and changes in spatial distribution has been heightened. However, the events do not display regional or regular patterns or cycles. Therefore, it is difficult to carry out quantified evaluation of their frequency and tendency. For more objective evaluation of extreme weather events, this study proposed a rainfall extreme weather index (STARDEX, 2005). To compare the present and future spatio-temporal distribution of extreme weather events, each index was calculated from the past data collected from 66 observation points nationwide operated by Korea Meteorological Administration (KMA). Tendencies up to now have been analyzed. Then, using SRES B2 scenario and 2045s (2031-2050) data from YONU CGCM simulation were used to compute differences among each of future extreme weather event indices and their tendencies were spatially expressed.The results shows increased rainfall tendency in the East-West inland direction during the summer. In autumn, rainfall tendency increased in some parts of Gangwon-do and the south coast. In the meanwhile, the analysis of the duration of prolonged dry period, which can be contrasted with the occurrence of rainfall or its concentration, showed that the dryness tendency was more pronounced in autumn rather than summer. Geographically, the tendency was more remarkable in Jeju-do and areas near coastal areas.

Spatio-Temporal Incidence Modeling and Prediction of the Vector-Borne Disease Using an Ecological Model and Deep Neural Network for Climate Change Adaption (기후 변화 적응을 위한 벡터매개질병의 생태 모델 및 심층 인공 신경망 기반 공간-시간적 발병 모델링 및 예측)

  • Kim, SangYoun;Nam, KiJeon;Heo, SungKu;Lee, SunJung;Choi, JiHun;Park, JunKyu;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.197-208
    • /
    • 2020
  • This study was carried out to analyze spatial and temporal incidence characteristics of scrub typhus and predict the future incidence of scrub typhus since the incidences of scrub typhus have been rapidly increased among vector-borne diseases. A maximum entropy (MaxEnt) ecological model was implemented to predict spatial distribution and incidence rate of scrub typhus using spatial data sets on environmental and social variables. Additionally, relationships between the incidence of scrub typhus and critical spatial data were analyzed. Elevation and temperature were analyzed as dominant spatial factors which influenced the growth environment of Leptotrombidium scutellare (L. scutellare) which is the primary vector of scrub typhus. A temporal number of diseases by scrub typhus was predicted by a deep neural network (DNN). The model considered the time-lagged effect of scrub typhus. The DNN-based prediction model showed that temperature, precipitation, and humidity in summer had significant influence factors on the activity of L. scutellare and the number of diseases at fall. Moreover, the DNN-based prediction model had superior performance compared to a conventional statistical prediction model. Finally, the spatial and temporal models were used under climate change scenario. The future characteristics of scrub typhus showed that the maximum incidence rate would increase by 8%, areas of the high potential of incidence rate would increase by 9%, and disease occurrence duration would expand by 2 months. The results would contribute to the disease management and prediction for the health of residents in terms of public health.

Implementation of Saemangeum Coastal Environmental Information System Using GIS (지리정보시스템을 이용한 새만금 해양환경정보시스템 구축)

  • Kim, Jin-Ah;Kim, Chang-Sik;Park, Jin-Ah
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.128-136
    • /
    • 2011
  • To monitor and predict the change of coastal environment according to the construction of Saemangeum sea dyke and the development of land reclamation, we have done real-time and periodic ocean observation and numerical simulation since 2002. Saemangeum coastal environmental data can be largely classified to marine meteorology, ocean physics and circulation, water quality, marine geology and marine ecosystem and each part of data has been generated continuously and accumulated over about 10 years. The collected coastal environmental data are huge amounts of heterogeneous dataset and have some characteristics of multi-dimension, multivariate and spatio-temporal distribution. Thus the implementation of information system possible to data collection, processing, management and service is necessary. In this study, through the implementation of Saemangeum coastal environmental information system using geographic information system, it enables the integral data collection and management and the data querying and analysis of enormous and high-complexity data through the design of intuitive and effective web user interface and scientific data visualization using statistical graphs and thematic cartography. Furthermore, through the quantitative analysis of trend changed over long-term by the geo-spatial analysis with geo- processing, it's being used as a tool for provide a scientific basis for sustainable development and decision support in Saemangeum coast. Moreover, for the effective web-based information service, multi-level map cache, multi-layer architecture and geospatial database were implemented together.

The Characteristics of Spatio-temporal Distribution on Environmental Factors After Construction of Artificial Structure in the Nakdong River Estuary (인공시설물 건설 이후 낙동강 하구 환경인자의 시·공간적분포특성)

  • Yoon, Sang Chol;Youn, Suk Hyun;Suh, Young Sang
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Nakdong River Estuary is affected by the dam, barrage construction and dredge and reclaim worked artificially. So, we have studied the area input both freshwater and sea water to understand marine environment of Nakdong River estuary related to the effect of artificial work from 2013 to 2015. As a result, The discharge flow to the estuary remarkably decreased before barrage construction and the average of salinity at the estuary increased. So, the brackish water zone reduced under the influence of decreased discharge flow. The major sources of nitrate and silicate were freshwater, phosphate supplied from bottom and the open sea water. The concentration of phosphate and dissolved oxygen (DO) decreased remarkably in spring and summer. we investigated that phosphate in freshwater was removed under the influence of the estuary dam and phosphate in sea water was removed under the influence of phytoplankton. The low concentration of DO was due to decomposition of the organic compound by microorganism after phytoplankton blooms. Generally, the concentrations of chlorophyll-a in summer was higher than spring and fall. Therefore, the change of ecosystem in Nakdong river estuary was due to decrease of freshwater influx, the other change is facing because of the barrage.

Spatio-temporal Distribution of Organic Matters in Surface Sediments and Its Origin in Deukryang Bay, Korea (득량만 표층퇴적물 중 유기물의 시.공간적 분포 및 기원)

  • 윤양호
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.735-744
    • /
    • 2003
  • The field observations on a seasonal characteristic of organic matter and its origin in the surface sediment were carried out at 35 stations in Deukryang bay, southern coast of Korean Peninsula from May 1995 to February 1996. The analytical parameters were mud temperature, ignition loss(IL), chemical oxygen demand(COD), pheopigment, sulfide and water content. The origin and seasonal dynamics of organic matter in Deukryang Bay were analyzed by COD/IL, COD/sulfide ratio and principal component analysis(PCA). As a results of the mud temperature fluctuated between 2.1$^{\circ}C$ with the lowest mean 4.6$^{\circ}C$ in winter and 27.6$^{\circ}C$ with the highest mean 25.5$^{\circ}C$ in summer. The range of ignition loss(IL) was from 3.1% in autumn to 21.5% in winter. Chemical oxygen demand(COD) showed the highest mean value of 8.45 mg/g dry in spring within the range of 2.90∼18.21 mg/g dry, while it showed the lowest value of 4.33 mg/g dry in autumn within the range of 0.67∼10.37 mg/g dry. Pheopigments showed the highest mean value of 9.04 $\mu\textrm{g}$/g dry in autumn within the range of 1.36∼20.44 $\mu\textrm{g}$/g dry, while it did the lowest mean value of 2.20 $\mu\textrm{g}$/g dry in summer within the range of 0.33∼11.36 $\mu\textrm{g}$/g dry. The range of total sulfide (H$_2$S) was from no detect(ND) to 3.30 mg/g dry in spring. And water content showed the annual mean value of 43.6% within the range of 23.6∼54.9%. The source of organic matter by COD/IL and COD/sulfide ratio in Deukryang Bay had been producted by primary producer in sea water areas except the areas effected by small stream, domestic and animal wastes. And the analytical results of PCA was able to be divided into three different regions. The former was characterized by the shallow depth and authigenic organic matter from phytoplankton in northwest area and northeastern inner bay, the secondary was done by deeper depth and allochthonous one from lands in southeast area and eastern entrance of bay, and the latter was done by authigenic one from the farm of seaweeds such as, sea cabbage, sea mustard etc in western entrance of bay. But a study on the relationship between sulfide and COD concentration in the northeastern inner bay which was characterized by the water stagnation will to take much more studying including major constituents of organic matter in the future.

Benthic Algal Flora in a Man-made Artificial Beach in the Hwawon Resort Complex, Southwestern Coast of Korea (화원관광단지 인공 해빈의 해조상)

  • Park, Chan Sun;Park, Kyung Yang;Hwang, Eun Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.2
    • /
    • pp.78-86
    • /
    • 2013
  • Qualitative and quantitative algal survey was conducted from March 2010 to December 2010 on a man-made artificial beach in the Hwawon Resort Complex in order to understand seasonal changes of algal flora. The seasonal change of algal vegetation was compared with intact natural habitat near from the experimental sites. Total 15 algal species were found at the artificial beach; 8 Chlorophyta, 3 Phaeophyta and 4 Rhodophyta. And 38 algal species were found at the natural habitat; 7 Chlorophyta, 9 Phaeophyta and 22 Rhodophyta. Dominant algal species at the artificial beach were Ulva compressa, U. intestinalis, U. prolifera, U. pertusa in winter and Urospora penicilliformis, U. intestinalis, U. compress in summer. In natural habitat, dominant algal species were U. pertusa, U. compressa in winter and Sargassum thunbergii, Ishige okamurae in summer. (R+C)/P explaining spatial distribution of seaweeds was 3.7~4.0 (warm-temperature) in the artificial beach and 2.6~3.4 (polar-temperate) in the natural habitat, respectively. The flora of artificial beach could be classified into the filamentous form (64.4%), the sheet form (21.9%), and the coarsely branched form (13.7%). There was significant difference from the two habitats representing dominant species, distributions and ratio of functional-form groups.

Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea (한반도 참나무 꽃가루 확산예측모델 개발)

  • Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Kim, Mijin;Choi, Ho-seong;Han, Mae Ja;Oh, Inbo;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.221-233
    • /
    • 2015
  • Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.

Study on Geostatistical Method for an Effectiveness Analysis on Carbon Reduction Policy - Focusing on the Carbon Point System (탄소저감정책 효과분석을 위한 공간통계기법 적용방안 연구 - 탄소포인트제도를 대상으로 -)

  • Hwang, Hae-Seong;Joo, Yong-Jin;Koh, June-Hwan
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Carbon Point system is Climate Change Action Program by providing incentives in proportion to voluntary reduction of energy consumption such as electricity, gas and water for houses, commercial facilities. So far, existing researches have been limited to construction of GHG(Green House Gas) Inventory and have little attention to empirical impact analysis on carbon reduction policy regarding the residential section. Therefore, this paper is intended to provide convincing findings of impact analysis on carbon reduction, revolving around the carbon point system. For this, we firstly calculated the carbon emission by using electricity and gas usage data in household targeting to Seongbuk-Gu. Carrying out IPA and spatio-temporal analysis. Then, we are capable of visualizing spatial patterns from 2007 to 2009 as a macro analysis. Following that, we explored the effect on carbon point system through Ex ante-Ex post Analysis by paired t-test. To conclude, we can spatially identify the distribution with a significant difference between carbon emissions according to energy use as a micro analysis by Hot Spot to Analysis on point entities. It is to be hoped that this method will be utilized to establish various policies and to evaluate the effect of reduction of GHG.

Distributional Characteristics and Population Dynamics of Endangered Plant, Paeonia obovata Maxim. (멸종위기야생식물인 산작약(Paeonia obovata Maxim.)의 분포특성과 개체군 동태)

  • Kim, Young Chul;Chae, Hyun Hee;Lee, Kyu Song
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.658-675
    • /
    • 2016
  • The environmental characteristics of the habitats, the population structures, ecological niche, life traits and the population demography are used as an essential informations to the effective conservation plans about the target species. We first confirmed a total of 37 populations through 12 years of investigation on the extents, and investigated the environmental factors of habitats and the population structures of the 25 cohorts in 12 regions among them. And, we investigated the population dynamics targeting at 8 cohorts in the population of Daegwanryeong-myeon, Pyeongchang-gun, Gangwon-do. Along with this, we conducted 4 years of cultivation experiments and how pollinators affect the success of reproduction. The results shows that the Paeonia obovata Maxim. was found in a relatively wide range of habitats. For the population structures of the 25 cohorts, there were considerable differences among cohorts, including a case which showed relative stable structure and an extreme case in which only adults were found. The factor that affected the population dynamics during the investigation was thought as a forest gap created in the tree layer. In the cultivation experiment, seedlings grew well in a less soil organic matter. The seed setting rate and the number of seeds generated by visiting pollinators were higher trends. In conclusion, to understand the distribution of the Paeonia obovata Maxim., there needs to be investigated on the other factors that are involved in dispersal factors other than environmental factors, and thus we suggest the necessity of the research on the dispersal vectors. The current Paeonia obovata Maxim. population was thought as a process of expansion after the rapid reduction of the extents in the past. For the effective conservation of the Paeonia obovata Maxim., an endangered plant, we recommend to understand the species through the spatio-temporal expansion, and maintain the health of the ecosystem based on it.