• 제목/요약/키워드: Spatial scales

검색결과 297건 처리시간 0.026초

A Gemini/GMOS-IFU Spectroscopy of E+A Galaxies in the Mid-infrared Green Valley: On the Spatial Distribution of Young Stellar Population

  • Lee, Gwang-Ho;Lee, Myung Gyoon;Bae, Hyunjin;Sohn, Jubee;Ko, Youkyung;Lee, Jaehyung;Kim, Eunchong;Cho, Brian S.
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.63.3-63.3
    • /
    • 2016
  • We present the two-dimensional distribution of stellar populations in five E+A galaxies from GMOS-N/IFU spectroscopy (GN-2015B-Q-15). Numerical simulations demonstrated that E+A galaxies formed by major mergers contain young stellar populations (e.g. A-type stars) that are centrally-concentrated within scales of 1 kpc. However, several IFU studies reported that A-type stars are widely distributed on ${\gg}$ 1kpc scales. In contrast, Pracy et al. (2013) found a central concentration of A-stars and strong negative Balmer absorption line gradients within 1 kpc scales for local (z < 0.03) E+A galaxies. They claimed that previous studies failed to detect the central concentration because the E+A galaxy samples in previous studies are too far (z ~ 0.1) to resolve the central kpc scales. To verify Pracy et al.'s argument and the expectation from simulations, we selected five E+A galaxies at 0.03 < z < 0.05. Furthermore, we selected the targets in the mid-infrared green valley (Lee et al. 2015). Thanks to good seeing (${\sim}0.4^{{\prime}{\prime}}{\simeq}0.33kpc$) of our observation, we are able to resolve the central 1 kpc region of our targets. We found that all five galaxies have negative Balmer line gradients, but that three galaxies have flatter gradients than those reported in Pracy et al. We discuss the results in relation with galaxy merger history.

  • PDF

공간 상호작용 모델에 대한 공간단위 수정가능성 문제(MAUP)의 영향 (Effects of the Modifiable Areal Unit Problem (MAUP) on a Spatial Interaction Model)

  • 김감영
    • 대한지리학회지
    • /
    • 제46권2호
    • /
    • pp.197-211
    • /
    • 2011
  • 공간 상호작용의 복잡성, 공간적 재현과 모델링의 필요성에 의해서 공간 상호작용 데이터의 합역이 불가피하다. 이러한 상황에서 본 연구의 목적은 공간 상호작용 데이터를 스케일을 달리하여 합역하거나 혹은 동일 스케일에서 합역 방식을 달리하여 합역하였을 때, 공간 상호작용 모델의 결과가 어떻게 달라지는지 평가하는 것이다. 공간 상호작용 데이터의 합역은 공간단위 수정가능성의 문제(Modifiable Areal Unit Problem: MAUP)를 야기한다. 공간 상호작용 데이터의 합역을 위하여 무작위로 구역 시드를 선정한 후 인접한 공간단위를 할당하는 방법, 구역 시드와 공간단위 사이의 연구 가중 거리를 최소화하는 방법, 구역 내 상호작용 비율을 최대화하는 방법, 구역 내 상호작용 비율을 최소화하는 방법을 사용하였다. MAUP의 영향을 평가하기 위한 공간 상호작용 모텔로 기원지-목적지 제약 포아송 회귀 모델을 이용하였다. 분석 결과는 모델 잔차의 공간적 특성뿐만 아니라 파라미터 추정값, 적합도 등이 MAUP의 영향을 받는다는 것을 보여주었다. 모델은 합역 방식 보다는 합역 수준에 더 민감하게 반응하였고, 모델에 대한 스케일 효과는 구획 방식에 따라 상이하게 나타났다.

공간자료와 지면모형을 이용한 면적증발산 추정 (Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea)

  • 윤진일;남재철;홍석영;김준;김광수;정유란;채남이;최태진
    • 한국농림기상학회지
    • /
    • 제6권3호
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

Nonequilibrium Domain Configurations Undergoing Large Angle Rotations in Mesoscopic Magnetic Thin Film Elements (retracted)

  • Choi, B.C.;Hong, Y.K.;Rudge J.;Donohoe G.;Xiao Q.F.
    • Journal of Magnetics
    • /
    • 제11권2호
    • /
    • pp.61-65
    • /
    • 2006
  • The physical origin of complex dynamic domain configuration in nonequilibrium magnetic systems with mesoscopic length scales has been studied. An increasing complexity in the spatial feature of the evolution is found to accompany the increasing reversal speed, when a ferromagnetic element is driven by progressively faster switching fields applied antiparallel to the initial magnetization direction. As reversal rates approach the characteristic precession frequencies of spin fluctuations, the thermal energy can boost the magnetization into local configurations which are completely different from those experienced during quasistatic reversal. The sensitive dependence of the spatial pattern on switching speed can be understood in terms of a dynamic exchange interaction of thermally excited spins; the coherent modulation of the spins is strongly dependent on the rise time of switching pulses.

Crop Field Extraction Method using NDVI and Texture from Landsat TM Images

  • Shibasaki, Ryosuke;Suzaki, Junichi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.159-162
    • /
    • 1998
  • Land cover and land use classification on a huge scale, e.g. national or continental scale, has become more and more important because environmental researches need land cover: And land use data on such scales. We developed a crop field extraction method, which is one of the steps in our land cover classification system for a huge area. Firstly, a crop field model is defined to characterize "crop field" in terms of NDVI value and textual information Textual information is represented by the density of straight lines which are extracted by wavelet transform. Secondly, candidates of NDVI threshold value are determined by "scale-space filtering" method. The most appropriate threshold value among the candidates is determined by evaluating the line density of the area extracted by the threshold value. Finally, the crop field is extracted by applying level slicing to Landsat TM image with the threshold value determined above. The experiment demonstrates that the extracted area by this method coincides very well with the one extracted by visual interpretation.

  • PDF

드론 원격정보 격자크기가 실제증발산량 산정에 미치는 영향 (Influence of Scaling in Drone-based Remotely Sensed Information on Actual Evapotranspiration Estimation)

  • 이길하
    • 한국환경과학회지
    • /
    • 제27권2호
    • /
    • pp.135-141
    • /
    • 2018
  • The specification of surface vegetation is essential for simulating actual evapotranspiration of water resources. The availability of land cover maps based on remotely collected data makes the specification of surface vegetation easier. The spatial resolution of hydrologic models rarely matches the spatial scales of the vegetation data needed, and remotely collected vegetation data often are upscaled up to conform to the hydrologic model scale. In this study, the effects of the grid scale of of surface vegetation on the results of actual evapotranspiration were examined. The results show that the coarser resolution causes larger error in relative terms and that a more realistic description of area-averaged vegetation nature and characteristics needs to be considered when calculating actual evapotranspiration.

Large-scale Structure Studies with Mock Galaxy Sample from the Horizon Run 4 & Multiverse Simulations

  • Hong, Sungwook E.
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.29.3-29.3
    • /
    • 2020
  • Cosmology is a study to understand the origin, fundamental property, and evolution of the universe. Nowadays, many observational data of galaxies have become available, and one needs large-volume numerical simulations with good quality of the spatial distribution for a fair comparison with observation data. On the other hand, since galaxies' evolution is affected by both gravitational and baryonic effects, it is nontrivial to populate galaxies only by N-body simulations. However, full hydrodynamic simulations with large volume are computationally costly. Therefore, alternative galaxy assignment methods to N-body simulations are necessary for successful cosmological studies. In this talk, I would like to introduce the MBP-galaxy abundance matching. This novel galaxy assignment method agrees with the spatial distribution of observed galaxies between 0.1Mpc ~ 100Mpc scales. I also would like to introduce mock galaxy catalogs of the Horizon Run 4 and Multiverse simulations, large-volume cosmological N-body simulations done by the Korean community. Finally, I would like to introduce some recent works with those mock galaxies used to understand our universe better.

  • PDF

LFFCNN: 라이트 필드 카메라의 다중 초점 이미지 합성 (LFFCNN: Multi-focus Image Synthesis in Light Field Camera)

  • 김형식;남가빈;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.149-154
    • /
    • 2023
  • This paper presents a novel approach to multi-focus image fusion using light field cameras. The proposed neural network, LFFCNN (Light Field Focus Convolutional Neural Network), is composed of three main modules: feature extraction, feature fusion, and feature reconstruction. Specifically, the feature extraction module incorporates SPP (Spatial Pyramid Pooling) to effectively handle images of various scales. Experimental results demonstrate that the proposed model not only effectively fuses a single All-in-Focus image from images with multi focus images but also offers more efficient and robust focus fusion compared to existing methods.

  • PDF

Deep Reference-based Dynamic Scene Deblurring

  • Cunzhe Liu;Zhen Hua;Jinjiang Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.653-669
    • /
    • 2024
  • Dynamic scene deblurring is a complex computer vision problem owing to its difficulty to model mathematically. In this paper, we present a novel approach for image deblurring with the help of the sharp reference image, which utilizes the reference image for high-quality and high-frequency detail results. To better utilize the clear reference image, we develop an encoder-decoder network and two novel modules are designed to guide the network for better image restoration. The proposed Reference Extraction and Aggregation Module can effectively establish the correspondence between blurry image and reference image and explore the most relevant features for better blur removal and the proposed Spatial Feature Fusion Module enables the encoder to perceive blur information at different spatial scales. In the final, the multi-scale feature maps from the encoder and cascaded Reference Extraction and Aggregation Modules are integrated into the decoder for a global fusion and representation. Extensive quantitative and qualitative experimental results from the different benchmarks show the effectiveness of our proposed method.

공간스케일 변화에 따른 생물다양성 평가 -강원도 백두대간 보호구역을 대상으로- (Evaluation of Biodiversity Based on Changes of Spatial Scale -A Case Study of Baekdudaegan Area in Kangwondo-)

  • 심우담;박진우;이정수
    • Journal of Forest and Environmental Science
    • /
    • 제30권1호
    • /
    • pp.91-100
    • /
    • 2014
  • This research was conducted on the conservation area of Baekdudaegan, Kangwondo under the purpose of evaluating bio-diversity according to the changes of spatial scale, using GIS data and spatial filtering method. The diversity index was calculated based on the information of species of The $5^{th}$ forest type map using Shannon-weaver index (H'), evenness index ($E_i$) and richness index ($R_i$). The diversity index was analyzed and compared according to the changes of 12 spatial scales from Kernel size $3{\times}3$ to $73{\times}73$ and basin unit. As for H' and $R_i$, spatial scale increased as diversity index decreased, while $E_i$ decreases gradually. H' and $R_i$ was highest; each 1.1 and 0.6, when the Kernel size was $73{\times}73$, while $E_i$ was 0.2, the lowest. When you look at according to the basin unit, for large basin unit, 'YeongDong' region shows higher diversity index than 'YeongSeo' region. For middle basin unit, 'Gangneung Namdaecheon' region, and for small basin unit, 'Gangneung Namdaecheon' and 'Gangneung Ohbongdaem' region shows high diversity index. When you look at the relationship between diversity index and Geographic factors, H' shows positive relation to curvature and sunshine factor while shows negative to elevation, slope, hillshade, and wetness index. Also $E_i$ was similar to the relationship between H' and Geographic factor. Meanwhile, $R_i$ shows positive relationship to curvature and sunshine factor, while negative to elevation, slope, hillshade, and wetness index. macro unit diversity index evaluation was possible through the GIS data and spatial filtering, and it can be a good source for local biosphere conservation policy making.