정지궤도 해색 센서(GOCI: Geostationary Ocean Color Imager) 는 세계 최초의 정지궤도 위성으로 매일 1 시간마다 8 장의 영상을 획득 할 수 있어 육상파 해양 모두 활용성이 높은 위성이다. 그러나 500m의 GSD(Ground Sample Distance)를 지니는 서해성도 영상은 육성 활용에 한계가 있다. 최근, 컴퓨터 비전분야에서 활발히 진행 중인 기술인 Super Resolution(이하 SR)는 유사 시간대에 촬영한 저해상도 영상으로부터 고해상도 영상을 제작하는 기술로, 이를 시간 해상도가 높은 시계열 위성인 GOCI에 적용한다면 해상도가 향상 된 영상을 제작하는 기술로, 이를 시간 해상도가 높은 시계열 위성인 GOCI에 적용한다면 해상도가 향상 된 영상의 취득이 가능하며, 또한 광학 위성 영상의 단점인 구름에 의해 손실된 지상 정보의 복원이 가능할 것이다. 본 연구에서는, GOCI 자료를 위한 효율적인 초해상도 영상 복원 알고리즘 개발을 위한 선행연구로써 위성 영상 취득과정과 유사한 환경의 시뮬레이션을 통해 시계열 자료를 제작하고, 제작된 자료를 제안한 알고리즘에 적용함으로서 0.1 단위의 픽셀 정합도를 확인하였고, 원본 영상과 RMSE 0.5763, PSNR 52.9183 db, SSIM Index 0.9486의 정확도를 나타낸 HR 영상을 복원하였다.
Super-resolution (SR) has great significance in image processing because it enables downstream vision tasks with high spatial resolution. Recently, SR studies have adopted deep learning networks and achieved remarkable SR performance compared to conventional example-based methods. Deep-learning-based SR models generally require low-resolution (LR) images and the corresponding high-resolution (HR) images as training dataset. Due to the difficulties in obtaining real-world LR-HR datasets, most SR models have used only HR images and generated LR images with predefined degradation such as bicubic downsampling. However, SR models trained on simple image degradation do not reflect the properties of the images and often result in deteriorated SR qualities when applied to real-world images. In this study, we propose an image degradation model for HR satellite images based on the modulation transfer function (MTF) of an imaging sensor. Because the proposed method determines the image degradation based on the sensor properties, it is more suitable for training SR models on remote sensing images. Experimental results on HR satellite image datasets demonstrated the effectiveness of applying MTF-based filters to construct a more realistic LR-HR training dataset.
고해상도 위성영상은 기상관측, 지형관측, 원격탐사, 군사시설감시, 문화재보호 등 많은 분야에서 이용된다. 위성영상은 동일한 위성영상 시스템에서 획득한 영상이라 할지라도 하드웨어(광학장치, 위성의 운용고도, 영상 센서 등)의 조건에 따라서 해상도가 저하된 영상들이 발생한다. 따라서 위성이 발사된 이후에는 이러한 해상도가 저하된 영상들의 해상도 향상을 위해서 영상시스템의 하드웨어를 변경하는 것은 불가능하므로 위성영상 자체를 이용하여 해상도를 향상시키는 방법이 필요하다. 본 논문에서는 이러한 저해상도 위성영상을 이용하여 해상도를 향상시키는 방법으로 SR(Super Resolution) 알고리즘을 사용하였다. SR 알고리즘은 다수의 저해상도 영상들의 정합을 통해 영상의 해상도를 향상시키는 알고리즘이다. 하지만 위성영상에서는 동일 지역에 대한 여러 장의 영상을 획득하기 어렵다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 어파인 변환(Affine Transform)및 투영 변환(Projection Transform)을 적용 후 영상에 대한 기하학적 변화를 보정하여 SR 알고리즘을 수행하였다. 그 결과 SR 알고리즘만 적용한 영상보다 어파인 변환과 투영 변환을 거친 후 SR 알고리즘을 적용한 영상에서 해상도가 확실하게 더 증가되는 것을 확인하였다.
1984년 처음 SR 알고리즘이 제안된 이후, 많은 SR 복원 알고리즘이 제안되었다 SR의 접근방법 중에서도 공간적 접근방법은 저해상도 이미지의 픽셀 값을 고해상도 이미지 격자에 매핑 함으로써 이루어진다. 이때, 저해상도 이미지들 간의 각각 다른 노이즈와 다른 PSF(Point Spread Function) 함수, 왜곡으로 인해 매핑 시 문제가 된다. 때문에 저해상도 이미지들의 노이즈 성분을 최소화하는 방법이 필요하다. 본 논문에서는 노이즈 성분을 최소화하는 방법으로 L1 norm의 방법을 사용하고 이와 동시에 이미지의 경계를 보완해주는 Huber norm을 사용하는 SR의 구조를 제안한다. 실험에서는 타 알고리즘과의 비교를 통해 제안한 알고리즘이 저해상도 이미지 상에 존재하는 노이즈를 줄이고 이미지 경계부분의 보완을 확인하였다.
고해상도 위성영상은 기상관측, 지형관측, 원격탐사, 군사시설감시, 문화재보호 등 많은 분야에서 이용된다. 위성영상은 동일한 위성영상 시스템에서 획득한 영상이라 할지라도 하드웨어(광학장치, 위성의 운용고도, 영상 센서 등)의 조건에 따라서 해상도가 저하된 영상들이 발생한다. 따라서 위성이 발사된 이후에는 이러한 해상도가 저하된 영상들의 해상도 향상을 위해서 영상시스템의 하드웨어를 변경하는 것은 불가능하므로 위성영상 자체를 이용하여 해상도를 향상시키는 방법이 필요하다. 본 논문에서는 이러한 저해상도 위성영상을 이용하여 해상도를 향상시키는 방법으로 SR(Super Resolution) 알고리즘을 사용하였다. SR 알고리즘은 다수의 저해상도 영상들의 정합을 통해 영상의 해상도를 향상시키는 알고리즘이다. 하지만 위성영상에서는 동일 지역에 대한 여러 장의 영상을 획득하기 어렵다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 특징점 자동추출과 투영 변환(Projection Transform)을 적용 후 영상에 대한 기하학적 변화를 보정하여 SR 알고리즘을 수행하였다. 그 결과 수동으로 특징점을 구한 SR 결과와 같이 에지 부분이 뚜렷하게 나타나는 것을 확인 할 수 있다.
In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 × 256 pixels (high resolution: HR) from TEM measurements and 32 × 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.
IEIE Transactions on Smart Processing and Computing
/
제3권5호
/
pp.271-274
/
2014
Bayesian based Multi-Frame Super-Resolution (MF-SR) has been used as a popular and effective SR model. On the other hand, the texture region is not reconstructed sufficiently because it works on the spatial domain. In this study, the MF-SR method was extended to operate on the frequency domain to improve HF information as much as possible. For this, a spatially weighted bilateral total variation model was proposed as a regularization term for a Bayesian estimation. The experimental results showed that the proposed method can recover the texture region more realistically with reduced noise, compared to conventional methods.
본 연구에서는 Second Simulation of the Satellite Signal in the Solar Spectrum Vector를 활용하여 Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD)의 기대 오차(expected error, EE)가 KOMPSAT-3A 지표반사도(surface reflectance, SR)의 정확도에 미치는 영향을 평가한다. 연구에서 다양한 지상 AOD와 그에 따른 MODIS AOD EE를 고려함으로써, 파장이 짧고 태양천정각(solar zenith angle, SZA)이 높을수록 SR 오류가 증가한다는 결과를 확인했으며, 이는 파장과 SZA 고려 사항을 통합하여 대기보정 알고리즘을 개선하기 위한 추가 연구가 필요하다는 점을 강조한다. 또한, 이 연구는 대기보정 과정에서 다른 위성의 AOD 자료 활용에 대해 더 잘 이해하기 위한 기초 자료를 제공하고 대기보정 기술 발전에 기여할 것으로 예상한다.
초해상도 영상복원은 동일 지역을 촬영한 여러 장의 저해상도 영상을 이용하여 고해상도의 영상으로 재구성하는 영상처리 알고리즘 기법이다. 이 기법은 위성영상, 비디오 감시, 영상 강조 및 복원, 영상 모자이킹, 의료 영상과 같이 여러 장의 프레임 영상을 획득할 수 있는 분야에서 유용하게 사용될 수 있다. 본 연구에서는 지상을 촬영한 비디오 영상 열에 공간영역 초해상도 기법을 적용하였다. 실험에 사용된 영상은 높은 중복도로 촬영된 연속적인 비디오 영상에서 부표본화되었으며, 저해상도 영상과 고해상도 영상간의 관측 모델을 구성하고 초해상도 영상복원 기법중의 하나인 MAP 알고리즘을 적용하였다. MAP 기법을 이용하여 여러 장의 저해상도 영상에서 고해상도 영상으로 복원하였으며, 그 결과를 기존의 영상보간 방법들과 비교하였다.
Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper we applied super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and overlapped for high rate. We constructed the observation model between the HR images and LR images applied by the Maximum A Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.