• 제목/요약/키워드: Spatial random forest

검색결과 101건 처리시간 0.021초

기계학습을 통한 토양오염물질 농도 예측 및 분포 매핑 (Predicting Concentrations of Soil Pollutants and Mapping Using Machine Learning Algorithms)

  • 강혜원;박상진;이동근
    • 환경영향평가
    • /
    • 제31권4호
    • /
    • pp.214-225
    • /
    • 2022
  • 본 연구는 사업시행이 환경에 미치는 부정적 영향을 최소화할 수 있는 방안을 강구하기 위해 환경영향평가 토양 부문을 강조하였다. 영향평가 절차에 대한 일련의 노력으로서 도시개발사업을 대상으로 하는 국가 인벤토리 기반 데이터베이스를 구축하였으며, 세 가지 기계학습 모델 성능 평가 및 토양오염물질 농도분포 매핑을 진행하였다. 여기에서, 가장 우수한 성능을 보여준 Random Forest 모델을 사용하여 대한 민국 수도권 지역을 대상 9가지 토양오염물질을 매핑하였다. 본 연구의 결과는 도시화가 가장 활발한 서울지역에서 아연(Zn), 불소(F) 및 카드뮴(Cd) 농도가 상대적으로 우려되는 것을 발견하였다. 또한, 수은(Hg)과 크롬(Cr6+)의 경우 농도가 기준 이하로 검출되었는데, 이는 중금속 농도에 영향을 미치는 산업 및 공업단지와 같은 오염원 부족이 원인으로 도출되었다. 토양오염물질 공간분포 매핑을 통해 토양특성 및 토지이용 유형과 오염물질 간의 유의한 상관관계를 유추하였다. 이를 통해 사업 현장 위치에 관한 토양오염 최소화 및 계획 결정에 대한 효율적인 토양관리 방안을 구축할 수 있을 것으로 기대한다.

산림지역에서의 2023년 봄철 꽃나무 개화시기 예측 (Prediction of Spring Flowering Timing in Forested Area in 2023)

  • 서지희;김수경;김현석;천정화;원명수;장근창
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.427-435
    • /
    • 2023
  • 이상기상으로 인한 봄꽃 개화 시기의 변화는 식물의 생장기간 뿐 아니라 생물계절을 포함한 생태계의 모든 측면에 영향을 미친다. 따라서 봄꽃 개화 시기를 예측하는 것은 산림 생태계의 효과적인 관리에 필수적이다. 본 연구에서는 464곳의 산림에서 수집된 날씨정보를 기반으로 대한민국 산림의 대표적인 5가지 수종(미선나무, 아까시나무, 철쭉, 산철쭉, 마가목)의 2023년 개화 시기를 예측하기 위해 과정 기반 모형을 사용하였다. 이를 위해 28개 지역의 9년간(2009-2017) 개화 시기 자료를 활용하여 모형을 개발하였다. 개화 시기는 식물의 세 개 이상의 위치에서 처음으로 꽃이 피는 것을 기준으로 측정되었다. 본 연구에서는 STDD와 GDD 과정 기반 모형을 사용하여 개화 시기를 예측하였으며, 두 모형 모두 일반적으로 우수한 성능을 보였다. 과정 기반 모형의 주요 입력변수인 날씨 자료는 산악기상관측시스템과 기상청에서 제공하는 기온 정보를 융합하여 1km의 공간 해상도로 일 단위 기온 자료를 생성하였다. 지역별 보정 계수를 생산하고 적용하기 위해 랜덤포레스트 기계 학습을 활용하여 STDD와 GDD 모형을 기반으로 예측 정확도를 개선하였다. 결과적으로 보정 계수가 적용될 때 대부분의 수종에서 개화 시기의 예측 오차가 작았으며, 특히, 미선나무, 아까시나무, 철쭉에서 평균제곱근오차가 각각 1.2, 0.6, 1.2일로 매우 낮았다. 모형 성능을 평가하기 위해 10회의 무작위 샘플링 테스트를 실시하고, 최적의 결정계수 값을 가진 모형을 선택하여 모형의 성능을 평가하였다. 그 결과, 마가목을 제외한 모든 수종에서 보정 계수가 적용된 모형에서 결정계수가 최소 0.07에서 최대 0.7 증가하였으며 최종적으로 75%에서 90%의 설명력을 가졌다. 이를 기반으로 수종별 보정 계수를 산출하였으며, 1km 해상도의 전국 단위 개화시기예측 지도를 제작하였다. 본 연구는 식물의 계절 변화에 대한 자료로 활용될 것으로 예상되며, 수종 및 지역별로 개화 시기를 상세히 설명하여 기후 변화로 인한 계절 변화를 연구하는 데에 유용할 것으로 기대된다. 또한 우리나라 산림의 주요 수종에 대한 정확도 높은 개화 시기 예측 서비스는 산림 방문객들의 산림 경험 만족도를 크게 높일 수 있으며, 양봉업 등 임업 종사자들의 경제적 향상에 기여할 것으로 기대된다.

GEMS 영상과 기계학습을 이용한 산불 연기 탐지 (Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning)

  • 정예민;김서연;김승연;유정아;이동원;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.967-977
    • /
    • 2022
  • 산불의 발생과 강도는 기후 변화로 인하여 증가하고 있다. 산불 연기에 의한 배출가스 대기질과 온실 효과에 영향을 미치는 주요 원인 중 하나로 인식되고 있다. 산불 연기의 효과적인 탐지를 위해서는 위성 산출물과 기계학습의 활용이 필수적이다. 현재까지 산불 연기 탐지에 대한 연구는 구름 식별의 어려움 및 모호한 경계 기준 등으로 인한 어려움이 존재하였다. 본 연구는 우리나라 환경위성 센서인 Geostationary Environment Monitoring Spectrometer (GEMS)의 Level 1, Level 2 자료와 기계학습을 이용한 산불 연기 탐지를 목적으로 한다. 2022년 3월 강원도 산불을 사례로 선정하여 산불 연기 레이블 영상을 생성하고, 랜덤 포레스트 모델에 GEMS Level 1 및 Level 2 자료를 투입하여 연기 픽셀 분류 모델링을 수행하였다. 훈련된 모델에서 입력변수의 중요도는 Aerosol Optical Depth (AOD), 380 nm 및 340 nm의 복사휘도 차, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), 포름알데히드, 이산화질소, 380 nm 복사휘도, 340 nm 복사휘도의 순서로 나타났다. 또한 2,704개 픽셀에 대한 산불 연기 확률(0≤p≤1) 추정에서 Mean Bias Error (MBE)는 -0.002, Mean Absolute Error (MAE)는 0.026, Root Mean Square Error (RMSE)는 0.087, Correlation Coefficient (CC)는 0.981의 정확도를 보였다.

기계학습을 통한 주간 반투명 구름탐지 연구: GK-2A/AMI를 이용하여 (A Study on Daytime Transparent Cloud Detection through Machine Learning: Using GK-2A/AMI)

  • 변유경;진동현;성노훈;우종호;전우진;한경수
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1181-1189
    • /
    • 2022
  • 구름은 대기 중에 떠 있는 작은 물방울이나 얼음 알갱이들 또는 혼합물 등으로 구성되며 지구 표면의 약 2/3를 덮고 있다. 위성영상내에서의 구름은 일부 다른 지상 물체 또는 지표면과 유사한 반사도 특성으로 인해 구름과 구름이 아닌 영역을 분리하는 구름탐지는 매우 어려운 작업이다. 특히 뚜렷한 특징을 가지는 두꺼운 구름과 달리 얇은 반투명 구름은 위성영상내에서 구름과 배경의 대비가 약하고 지표면과 혼합되어져 나타나기 때문에 대부분 구름탐지에서 쉽게 놓쳐지고 많은 어려움을 주는 대상으로 작용한다. 이러한 구름탐지의 반투명 구름의 한계점을 극복하기 위해, 본 연구에서는 머신러닝 기법(Random Forest [RF], Convolutional Neural Networks [CNN])을 활용하여 반투명 구름을 중점으로 한 구름탐지 연구를 수행하였다. Reference자료로는 MOderate Resolution Imaging Spectroradiometer (MODIS)에서 제공하는 MOD35자료에서 Cloud Mask와 Cirrus Mask를 활용하였으며 반투명 구름 픽셀을 고려한 모델 훈련을 위해 훈련 데이터의 픽셀 비율을 구름, 반투명 구름, 청천이 약 1:1:1이 되도록 구성하였다. 연구의 정성적 비교 결과, RF와 CNN 모두 반투명 구름을 포함한 다양한 형태의 구름 등을 잘 탐지하였고, RF 모델 결과와 CNN 모델 결과를 혼합한 RF+CNN경우에는 개별 모델의 한계점을 개선시키며 구름탐지가 잘 수행되어진 것을 확인하였다. 연구의 정량적 결과 RF의 전체 정확도(OA) 값은 92%, CNN은 94.11%를 보였고, RF+CNN은 94.29%의 정확도를 보였다.

Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출 (An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images)

  • 최소연;윤유정;강종구;박강현;김근아;이슬찬;최민하;정하규;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.925-938
    • /
    • 2022
  • 농업용 저수지는 전국적으로 중요한 수자원으로 기후변화에 따른 가뭄과 같은 이상기후의 영향에 취약한 특성을 가지며 적절한 운영을 위해 강화된 관리가 필요하다. 지속적인 모니터링을 통한 수위 추적(water level tracking)이 필요하지만 현실적인 문제로 현장 실측 및 관측이 어려운 실정이다. 본 연구는 저수지 수표면적을 측정하기 위해 광역 모니터링이 가능한 위성레이더 자료를 이용하여 4가지 AI 모델 간의 수체 탐지 성능에 대해 객관적인 비교를 제시한다. 위성 레이더자료는 Sentinel-1 SAR 이미지를 사용하였으며, 광학영상과 달리 기상환경에 영향을 적게 받기 때문에 장기 모니터링에 적합하다. 드론 이미지, Sentinel-1 SAR 그리고 DSM 데이터를 사용하여 Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), Automated Machine Learning (AutoML)의 4가지 AI 모델을 구축했다. 연구대상 저수지는 총 22개소로 유효저수량이 30만톤 미만의 중소형 저수지이다. 총 45개 이미지가 모델 훈련과 검증에 사용되었으며, 연구 결과 AutoML 모델이 Accuracy=0.92, mIoU=0.81로 다른 3가지 모델에 비해 수체 픽셀 분류에서 0.01-0.03 더 나은 것을 보여주었다. 해당 결과는 SAR 영상으로부터 AutoML을 이용한 중소형 저수지 대상의 수체 분류 기법이 기존의 머신러닝 기법만큼의 성능을 보이는 것을 보여주었고, 학습을 통한 수표면적 분류 기술의 저수지 모니터링에 대한 적용 가능성을 보여주었다.

다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정 (Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data)

  • 김호림;유순영;윤성택;김경호;이군택;이정호;허철호;류동우
    • 자원환경지질
    • /
    • 제55권4호
    • /
    • pp.353-366
    • /
    • 2022
  • 지구과학 데이터(지오데이터)의 공간 이질성, 희소성 및 고차원성으로 인해 공간 분포 추정에 어려움이 있다. 따라서 지구과학의 많은 응용 분야에서 지오데이터의 고유 특성을 고려할 수 있는 공간 추정 기법이 필요하다. 본 연구에서는 기계 학습 알고리즘 중 하나인 가우시안 혼합 모델(Gaussian Mixture Model; GMM)을 이용하여 공간 예측 방법을 제공하고자 하였다. 제안된 기법의 성능을 검증하기 위해, 옛 제련소 부지에서 휴대용 X선 형광분석기(PXRF) 및 유도결합플라즈마-원자방출분광법(ICP-AES)을 이용하여 분석된 토양 농도 자료를 활용하였다. ICP-AES를 이용해 분석된 As와 Pb를 주변수로 하고, 나머지 자료는 보조변수로 활용하였다. 다차원의 보조변수 중 중요 변수를 선별하기 위해 랜덤포레스트 기반의 변수선택법을 적용하였다. ICP-AES 및 PXRF를 통해 구축된 다변량 데이터를 사용한 GMM의 결과를 단변량 및 이변량 데이터를 사용한 정규 크리깅(Ordinary Kriging; OK) 및 정규 공동크리깅(Ordinary Co-Kriging; OCK)의 결과와 비교하였다. GMM의 결과는 OK 및 OCK의 결과보다 낮은 평균 제곱근 편차(RMSE; 비소는 최대 0.11 및 납은 0.33까지 향상)와 높은 상관관계(r; 비소는 최대 0.31 및 납은 0.46까지 향상)를 제공하였다. 이는 GMM을 사용할 경우 토양 오염의 범위 해석의 성능을 향상시킬 수 있음을 지시한다. 본 연구는 다 변량 공간추정 접근법이 복잡하고 이질적인 지질 및 지구 화학자료의 특징을 이해하는 데 효과적으로 적용될 수 있음을 증명하였다.

고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측 (Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change)

  • 한종수;김성진;김동민;이사우;황상철;김지원;정세웅
    • 환경영향평가
    • /
    • 제30권5호
    • /
    • pp.271-296
    • /
    • 2021
  • 댐 저수지 수온성층은 수직혼합을 억제하여 저층의 빈산소층 형성과 퇴적물 영양염류 용출을 일으키는 원인이므로 미래 기후변화에 따른 저수지 성층구조의 변화는 수질 및 수생태 관리 측면에서 매우 중요하다. 본 연구의 목적은 대청댐 저수지를 대상으로 고빈도 자료기반의 통계적 저수지 유입 수온 예측 모델을 개발하고, RCP(Representative Concentration Pathways) 기후변화 시나리오를 고려한 미래 유입 수온변화와 대청호 성층구조의 변화를 예측하는 데 있다. 대청호 유입 수온 예측을 위해 개발한 Random Forest 회귀 예측모델(NSE 0.97, RMSE 1.86℃, MAPE 9.45%)은 실측 수온의 통계량과 변동성을 적절히 재현하였다. 지역 기후 모델(HadGEM3-RA)로 예측된 RCP 시나리오별 미래 기상자료를 Random Forest 모델에 입력하여 유입 수온을 예측하고 3차원 저수지 수리 모델을 이용하여 기후변화에 따른 대청호의 미래(2018~2037, 2038~2057, 2058~2077, 2078~2097) 수온성층 구조 변화를 예측하였다. 예측 결과, 미래 기후 시나리오별로 대기 온도와 저수지 유입 수온의 증가속도는 각각 0.14~0.48℃/10year와 0.21~0.43℃/10year의 범위로써 지속적으로 증가하였다. 계절별 분석 결과, RCP 2.6 시나리오의 봄과 겨울철을 제외한 모든 시나리오에서 유입 수온은 증가 경향이 통계적으로 유의하였으며, 탄소저감 노력이 약한 기후 시나리오로 갈수록 수온의 증가속도가 빨랐다. 저수지 표층 수온의 증가속도는 0.04~0.38℃/10year 범위였으며, 모든 시나리오에서 성층화 기간이 점진적으로 증가되었다. 특히 RCP 8.5 시나리오 적용 시 성층일수는 약 24일 증가하는 것으로 전망되었다. 연구 결과는 기후변화가 호소의 성층강도를 강화하고 성층형성 기간을 장기화한다는 선행연구 결과와 일치하며, 수온성층의 장기화는 저층 빈산소층 확대, 퇴적물-수체간 영양염류 용출량 증가, 수체 내 조류 우점종의 변화 등 수생태계 변화를 유발할 수 있음을 시사한다.

기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정 (Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia)

  • 최현영;강유진;임정호
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.275-290
    • /
    • 2021
  • 대기 중의 이산화황(SO2)은 주로 인위적 배출원에 의해 발생하며 화학 반응을 통해 (초)미세먼지를 형성하여 직간접적으로 주변 환경 및 인체 건강에 해로운 영향을 주는 물질이다. 특히 지상에서의 농도는 인간 활동과 밀접한 관련이 있어 모니터링의 필요성이 매우 크다. 따라서, 본 연구에서는 TROPOMI SO2 연직 컬럼 농도 산출물 및 타 위성 산물과 모델 산출물 등을 융합 활용하여 기계학습 기법에 적용하여 SO2 지상 농도 추정모델을 개발하였다. 기계학습 기법으로는 널리 활용되고 있는 RF(Random Forest)에 잔차 보정 과정을 결합한 2-step 잔차 보정 RF를 적용하였다. 개발된 모델은 무작위, 공간 및 시간별 10-fold 교차 검증을 통하여 검증하였으며, 기울기(slope) 값이 1.14-1.25, 상관계수(R) 값이 0.55-0.65, rRMSE 값이 약 58-63% 정도로 나타났다. 이는 잔차 보정이 적용되지 않은 기존의 RF 대비 slope의 경우 약 10%, R과 rRMSE의 경우 약 3% 가량 향상된 결과를 보인다. 국가별로 나누어 분석하였을 때에는 샘플 수가 적고 SO2의 전반적인 농도가 낮은 일본 지역에서의 공간별 10-fold 교차검증 성능이 소폭 감소하는 것으로 나타났다. SO2 지상농도 분포를 계절별로 표출하였을 때, 일본의 경우 다른 지역 대비 연중 저농도가 관찰되며 높은 결측 값 비율로 인하여 관측소 농도 대비 2-step 잔차 보정 RF 모델에서 과대 모의하는 경향이 관찰되었다. 대표적 고농도 발생지인 중국의 YRD(Yangtze River Delta) 와 한국의 SMA(Seoul Metropolitan Area)의 계절적 분포 변화를 추가적으로 분석하였을 때, 연료 연소로 인한 겨울철 농도 증가 패턴이 나타났다. 이는 인위적 배출원의 영향을 크게 받는 SO2의 시공간적인 분포 특성을 잘 반영하고 있는 결과이다. 따라서, 본 연구를 통하여 제안한 모델은 장기적으로 SO2 지상 농도의 시공간적 분포를 파악하는 데에 활용될 수 있을 것으로 기대된다.

Object Classification based on Weakly Supervised E2LSH and Saliency map Weighting

  • Zhao, Yongwei;Li, Bicheng;Liu, Xin;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.364-380
    • /
    • 2016
  • The most popular approach in object classification is based on the bag of visual-words model, which has several fundamental problems that restricting the performance of this method, such as low time efficiency, the synonym and polysemy of visual words, and the lack of spatial information between visual words. In view of this, an object classification based on weakly supervised E2LSH and saliency map weighting is proposed. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is employed to generate a group of weakly randomized visual dictionary by clustering SIFT features of the training dataset, and the selecting process of hash functions is effectively supervised inspired by the random forest ideas to reduce the randomcity of E2LSH. Secondly, graph-based visual saliency (GBVS) algorithm is applied to detect the saliency map of different images and weight the visual words according to the saliency prior. Finally, saliency map weighted visual language model is carried out to accomplish object classification. Experimental results datasets of Pascal 2007 and Caltech-256 indicate that the distinguishability of objects is effectively improved and our method is superior to the state-of-the-art object classification methods.

Machine Learning Approaches to Corn Yield Estimation Using Satellite Images and Climate Data: A Case of Iowa State

  • Kim, Nari;Lee, Yang-Won
    • 한국측량학회지
    • /
    • 제34권4호
    • /
    • pp.383-390
    • /
    • 2016
  • Remote sensing data has been widely used in the estimation of crop yields by employing statistical methods such as regression model. Machine learning, which is an efficient empirical method for classification and prediction, is another approach to crop yield estimation. This paper described the corn yield estimation in Iowa State using four machine learning approaches such as SVM (Support Vector Machine), RF (Random Forest), ERT (Extremely Randomized Trees) and DL (Deep Learning). Also, comparisons of the validation statistics among them were presented. To examine the seasonal sensitivities of the corn yields, three period groups were set up: (1) MJJAS (May to September), (2) JA (July and August) and (3) OC (optimal combination of month). In overall, the DL method showed the highest accuracies in terms of the correlation coefficient for the three period groups. The accuracies were relatively favorable in the OC group, which indicates the optimal combination of month can be significant in statistical modeling of crop yields. The differences between our predictions and USDA (United States Department of Agriculture) statistics were about 6-8 %, which shows the machine learning approaches can be a viable option for crop yield modeling. In particular, the DL showed more stable results by overcoming the overfitting problem of generic machine learning methods.