• Title/Summary/Keyword: Spatial random forest

Search Result 101, Processing Time 0.024 seconds

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

Cause-specific Spatial Point Pattern Analysis of Forest Fire in Korea (우리나라 산불 발생의 원인별 공간적 특성 분석)

  • Kwak, Han-Bin;Lee, Woo-Kyun;Lee, Si-Young;Won, Myung-Soo;Koo, Kyo-Sang;Lee, Byung-Doo;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.259-266
    • /
    • 2010
  • Forest fire occurrence in Korea is highly related to human activities and its spatial distribution shows a strong spatial dependency with cluster pattern. In this study, we analyzed spatial distribution pattern of forest fire with point pattern analysis considering spatial dependency. Distributional pattern was derived from Ripley's K-function according to causes and distances. Spatially clustered intensity was found out using Kernel intensity estimation. As a result, forest fires in Korea show clustered pattern, although the degrees of clustering for each cause are different. Furthermore, spatial clustering pattern can be classified into two groups in terms of degrees of clustering and distance. The first group shows the national-wide cluster pattern related to the human activity near forests, such as human-induced accidental fire in mountain and field incineration. Another group shows localized cluster pattern which is clustered within a short distance. It is associated with the smoker fire, arson, accidental by children. The range of localized clustering was 30 km. Beyond of this range, the patterns of forest fire became random distribution gradually. Kernel intensity analysis showed that the latter group, which have localized cluster pattern, was occurred in near Seoul with high densed population.

Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands (영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험)

  • Park, Soyeon;Kang, Sol A;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.523-533
    • /
    • 2022
  • This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial down scaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

Spatial Distribution Pattern and Association of Crowns and Saplings for Major Tree Species in the Mixed Broadleaved-Korean Pine Forest of Xiaoxing'an Mountains, China

  • Jin, Guangze;Li, Zhihong;Tang, Yan;Kim, Ji-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • This study was conducted to evaluate spatial distribution pattern and spatial association of crowns (${\geq}10m$ of height) and saplings (<10 m of height and ${\geq}2cm$ of DBH) for four major tree species (Pinus koraiensis, Abies nephrolepis, Acer mono, and Tilia amurensis) in the mixed broadleaved-Korean pine forest of Xiaoxing'an Mts. Vegetation data were collected in the 9 ha permanent sample plot, and the analysis adopted the point pattern analysis method. Main results are as follows; 1) crowns and saplings of major species showed clumped distribution pattern in small scale, became random distribution as the scale was increased. 2) Saplings of Pinus koraiensis performed poor regeneration under the crowns of Pinus koraiensis and Abies nephrolepis; Saplings of Abies nephrolepis did good regeneration under the crowns of Pinus koraiensis and Abies nephrolepis; and crowns of Acer mono and Tilia amurensis had little effect on the distribution of saplings of Pinus koraiensis and Abies nephrolepis. Saplings of Acer mono and Tilia amurensis made good regeneration under the crowns of Pinus koraiensis and Tilia amurensis; and the crowns of Acer mono and Abies nephrolepis had little effect on the distribution of saplings of Acer mono.

Application of machine learning for merging multiple satellite precipitation products

  • Van, Giang Nguyen;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.134-134
    • /
    • 2021
  • Precipitation is a crucial component of water cycle and play a key role in hydrological processes. Traditionally, gauge-based precipitation is the main method to achieve high accuracy of rainfall estimation, but its distribution is sparsely in mountainous areas. Recently, satellite-based precipitation products (SPPs) provide grid-based precipitation with spatio-temporal variability, but SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution quite coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation using Automatic weather system (AWS) in Korea and multiple SPPs(i.e. CHIRPSv2, CMORPH, GSMaP, TRMMv7) during the period of 2003-2017. And this study used a machine learning based Random Forest (RF) model for generating new merging precipitation. In addition, several statistical linear merging methods are used to compare with the results of the RF model. In order to investigate the efficiency of RF, observed data from 64 observed Automated Synoptic Observation System (ASOS) were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the random forest model showed higher accuracy than each satellite rainfall product and spatio-temporal variability was better reflected than other statistical merging methods. Therefore, a random forest-based ensemble satellite precipitation product can be efficiently used for hydrological simulations in ungauged basins such as the Mekong River.

  • PDF

Spatial distribution patterns of old-growth forest of dioecious tree Torreya nucifera in rocky Gotjawal terrain of Jeju Island, South Korea

  • Shin, Sookyung;Lee, Sang Gil;Kang, Hyesoon
    • Journal of Ecology and Environment
    • /
    • v.41 no.8
    • /
    • pp.223-234
    • /
    • 2017
  • Background: Spatial structure of plants in a population reflects complex interactions of ecological and evolutionary processes. For dioecious plants, differences in reproduction cost between sexes and sizes might affect their spatial distribution. Abiotic heterogeneity may also affect adaptation activities, and result in a unique spatial structure of the population. Thus, we examined sex- and size-related spatial distributions of old-growth forest of dioecious tree Torreya nucifera in extremely heterogeneous Gotjawal terrain of Jeju Island, South Korea. Methods: We generated a database of location, sex, and size (DBH) of T. nucifera trees for each quadrat ($160{\times}300m$) in each of the three sites previously defined (quadrat A, B, C in Site I, II, and III, respectively). T. nucifera trees were categorized into eight groups based on sex (males vs. females), size (small vs. large trees), and sex by size (small vs. large males, and small vs. large females) for spatial point pattern analysis. Univariate and bivariate spatial analyses were conducted. Results: Univariate spatial analysis showed that spatial patterns of T. nucifera trees differed among the three quadrats. In quadrat A, individual trees showed random distribution at all scales regardless of sex and size groups. When assessing univariate patterns for sex by size groups in quadrat B, small males and small females were distributed randomly at all scales whereas large males and large females were clumped. All groups in quadrat C were clustered at short distances but the pattern changed as distance was increased. Bivariate spatial analyses testing the association between sex and size groups showed that spatial segregation occurred only in quadrat C. Males and females were spatially independent at all scales. However, after controlling for size, males and females were spatially separated. Conclusions: Diverse spatial patterns of T. nucifera trees across the three sites within the Torreya Forest imply that adaptive explanations are not sufficient for understanding spatial structure in this old-growth forest. If so, the role of Gotjawal terrain in terms of creating extremely diverse microhabitats and subsequently stochastic processes of survival and mortality of trees, both of which ultimately determine spatial patterns, needs to be further examined.

A Spatial Analysis of Seismic Vulnerability of Buildings Using Statistical and Machine Learning Techniques Comparative Analysis (통계분석 기법과 머신러닝 기법의 비교분석을 통한 건물의 지진취약도 공간분석)

  • Seong H. Kim;Sang-Bin Kim;Dae-Hyeon Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.159-165
    • /
    • 2023
  • While the frequency of seismic occurrence has been increasing recently, the domestic seismic response system is weak, the objective of this research is to compare and analyze the seismic vulnerability of buildings using statistical analysis and machine learning techniques. As the result of using statistical technique, the prediction accuracy of the developed model through the optimal scaling method showed about 87%. As the result of using machine learning technique, because the accuracy of Random Forest method is 94% in case of Train Set, 76.7% in case of Test Set, which is the highest accuracy among the 4 analyzed methods, Random Forest method was finally chosen. Therefore, Random Forest method was derived as the final machine learning technique. Accordingly, the statistical analysis technique showed higher accuracy of about 87%, whereas the machine learning technique showed the accuracy of about 76.7%. As the final result, among the 22,296 analyzed building data, the seismic vulnerabilities of 1,627(0.1%) buildings are expected as more dangerous when the statistical analysis technique is used, 10,146(49%) buildings showed the same rate, and the remaining 10,523(50%) buildings are expected as more dangerous when the machine learning technique is used. As the comparison of the results of using advanced machine learning techniques in addition to the existing statistical analysis techniques, in spatial analysis decisions, it is hoped that this research results help to prepare more reliable seismic countermeasures.

A Cross-Validation of SeismicVulnerability Assessment Model: Application to Earthquake of 9.12 Gyeongju and 2017 Pohang (지진 취약성 평가 모델 교차검증: 경주(2016)와 포항(2017) 지진을 대상으로)

  • Han, Jihye;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.649-655
    • /
    • 2021
  • This study purposes to cross-validate its performance by applying the optimal seismic vulnerability assessment model based on previous studies conducted in Gyeongju to other regions. The test area was Pohang City, the occurrence site for the 2017 Pohang Earthquake, and the dataset was built the same influencing factors and earthquake-damaged buildings as in the previous studies. The validation dataset was built via random sampling, and the prediction accuracy was derived by applying it to a model based on a random forest (RF) of Gyeongju. The accuracy of the model success and prediction in Gyeongju was 100% and 94.9%, respectively, and as a result of confirming the prediction accuracy by applying the Pohang validation dataset, it appeared as 70.4%.

Machine Learning-based Atmospheric Correction for Sentinel-2 Images Using 6SV2.1 and GK2A AOD (6SV2.1과 GK2A AOD를 이용한 기계학습 기반의 Sentinel-2 영상 대기보정)

  • Seoyeon Kim;Youjeong Youn;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Chan-Won Park;Kyung-Do Lee;Sang-Il Na;Ho-Yong Ahn;Jae-Hyun Ryu;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1061-1067
    • /
    • 2023
  • In this letter, we simulated an atmospheric correction for Sentinel-2 images, of which spectral bands are similar to Compact Advanced Satellite 500-4 (CAS500-4). Using the second simulation of the satellite signal in the solar spectrum - vector (6SV)2.1 radiation transfer model and random forest (RF), a type of machine learning, we developed an RF-based atmospheric correction model to simulate 6SV2.1. As a result, the similarity between the reflectance calculated by 6SV2.1 and the reflectance predicted by the RF model was very high.

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning (기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원)

  • Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.953-966
    • /
    • 2022
  • Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.