• Title/Summary/Keyword: Spatial orientation

Search Result 252, Processing Time 0.032 seconds

A Study on the Formation of the Orientation and the Event Through the phenomenological cognitive system (현상학적 지각체계에 의한 정위와 사건의 형성에 관한 연구)

  • Byun, Dae-Joong
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.1
    • /
    • pp.68-77
    • /
    • 2012
  • Appreciating the aspect of modem architecture requires not only the comprehension of the nature of design and architects' ways of thinking and expression but also observers' views on buildings and their perceptive/cognitive stages. This calls for an in-depth study on the "system of phenomenological perceptions" that works as a new architectural experience system. The system of phenomenological perceptions makes it possible to specify the individual process of understanding architecture, that is, hands-on experiences, participations, feelings, perceptions, and cognition. The value of user experience and cognition has been emphasized by philosophical and aesthetical concepts as well. Therefore, in order to better appreciate the modern architecture, this study suggests theoretical consideration to "orientation and event" that are crucial elements in understanding a phenomenological view and materializing actual space formation. This offers the cognitive system with which we analyze modem architecture and comprehensive expressional methods. In other words, this study contemplates the system of phenomenological perceptions from an existential spatial perspective by structurizing the system of the orientation and the event in order to segmentalize users' current locations, potential directions, the relations with spaces, continual vie'wpoints as well as buildings' functions and interior and exterior division. The system of phenomenological perceptions helps understand and systemize modern architecture through a system based on relations between sensation, perception, cognition, sensitivity, and rationality. This creates a new cognitive system employing the concept of the orientation and the event, which is different from a normal cognitive system basing on the sense of vision. When observers appreciate space, they tend to relate the space to a certain event and to remember their experiences in it. During the process, they draw borders of the space in which the event takes place and give shape to their experiences including actions, movements, cognition and sensation. The process leads to the formation of "placeness," and here, the concept of the orientation comes in as the location and the center of the placeness. This study proves that a determined orientation coupled with individual experience and events settles the place ness; detailed elements in the cognitive system have close relations with one another; the orientation, actions, events, and places are the factors that materialize observers' architectural experience.

  • PDF

Moving target detection by using the hierarchical spatiotemporal filters with orientation selectivity (방향성 계층적 시공간 필터에 의한 움직이는 물체의 검출)

  • 최태완;김재창;윤태훈;남기곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.135-143
    • /
    • 1996
  • In this paper, we popose a neural network that detects edges of moving objects in an image using a neural network of hierarchical spatial filter with orientation selectivity. We modify the temporal difference network by adding a self loop to each neuraon cell to reduce the problems of phantom edge detected by the neural network proposed by kwon yool et al.. The modified neural network alleviates the phantom edges of moving objects, and also can detect edges of miving objects even for the noisy input. By computer simulation with real images, the proposed neural netowrk can extract edges of different orientation efficiently and also can reduce the phantom edges of moving objects.

  • PDF

Rheological Behavior of Polymer/Layered Silicate Nanocomposites under Uniaxial Extensional Flow

  • Park Jun-Uk;Kim Jeong-Lim;Kim Do-Hoon;Ahn Kyung-Hyun;Lee Seung-Jong;Cho Kwang-Soo
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.318-323
    • /
    • 2006
  • We investigated the rheological behaviors and orientation of three different types of layered silicate composite systems under external flow: microcomposite, intercalated and exfoliated nanocomposites. Rheological measurements under shear and uniaxial extensional flows, two-dimensional, small-angle X-ray scattering and transmission electron microscopy were conducted to investigate the properties, as well as nano- and micro-structural changes, of polymer/layered silicate nanocomposites. The preferred orientation of the silicate layers to the flow direction was observed under uniaxial extensional flow for both intercalated and exfoliated systems, while the strain hardening behavior was observed only in the exfoliated systems. The degree of compatibility between the polymer matrix and clay determined the microstructure of polymer/clay composites, strain hardening behavior and spatial orientation of the clays under extensional flow.

Correlation analysis between rotation parameters and attitude parameters in simulated satellite image

  • Yun, Young-Bo;Park, Jeong-Ho;Yoon, Geun-Won;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.553-558
    • /
    • 2002
  • Physical sensor model in pushbroom satellite images can be made from sensor modeling by rotation parameters and attitude parameters on the satellite track. These parameters are determined by the information obtained from GPS, INS, or star tracker. Provided from satellite image, an auxiliary data error is connected directly with an error of rotation parameters and attitude parameters. This paper analyzed how obtaining satellite images influenced errors of rotation parameters and attitude parameters. furthermore, for detailed analysis, this paper generated simulated satellite image, which was changed variously by rotation parameters and attitude parameters of satellite sensor model. Simulated satellite image is generated by using high-resolution digital aerial image and DEM (Digital Elevation Model) data. Moreover, this paper determined correlation of rotation parameter and attitude parameters through error analysis of simulated satellite image that was generated by various rotation parameters and attitude parameters.

  • PDF

Effect of spatial characteristics of a weak zone on tunnel deformation behavior

  • Yoo, Chungsik
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • This paper focuses on the deformation behavior of tunnels crossing a weak zone in conventional tunneling. A three-dimensional finite element model was adopted that allows realistic modeling of the tunnel excavation and the support installation. Using the 3D FE model, a parametric study was conducted on a number of tunneling cases with emphasis on the spatial characteristics of the weak zone such as the strike and dip angle, and on the initial stress state. The results of the analyses were thoroughly examined so that the three-dimensional tunnel displacements at the tunnel crown and the sidewalls can be related to the spatial characteristic of the weak zone as well as the initial stress state. The results indicate that the effectiveness of the absolute displacement monitoring data as early warning indicators depends strongly on the spatial characteristics of the weak zone. It is also shown that proper interpretation of the absolute monitoring data can provide not only early warning for a weak zone outside the excavation area but also information on the orientation and the extent of the weak zone. Practical implications of the findings are discussed.

3D Positioning Using a UAV Equipped with a Stereo Camera (스테레오 카메라를 탑재한 UAV를 이용한 3차원 위치결정)

  • Park, Sung-Geun;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.185-198
    • /
    • 2021
  • Researches using UAVs are being actively conducted in the field of quickly constructing 3D spatial information in small areas. In this study, without using ground control points, a stereo camera was mounted on a UAV to collect images and quickly construct three-dimensional positions through image matching, bundle adjustment, and the determination of a scale factor. Through the experiment, when bundle adjustment was performed using stereo constraints, the root mean square error was 1.475m, and when absolute orientation was performed in consideration of a scale, it was found to be 0.029m. Through this, it was found that when using the data processing method of a UAV equipped with a stereo camera proposed in this study, high-accuracy 3D spatial information can be constructed without using ground control points.

Reflections on the Elementary School Geometry Curriculum in the Netherlands -Based on the Realistic Mathematics Education- (네덜란드의 초등학교 기하 교육과정에 대한 개관 -현실적 수학교육을 중심으로-)

  • Chong, Yeong-Ok
    • School Mathematics
    • /
    • v.9 no.2
    • /
    • pp.197-222
    • /
    • 2007
  • The study aims to reflect the elementary school geometry education based on the Realistic Mathematics Education in the Netherlands in the light of the results from recent researches in geometry education and the direction of geometry standards for school mathematics of the National Council of Teachers of Mathematics in order to induce implications for improving korean geometry curriculum and textbook series. In order to attain these purposes, the present paper reflects the history of elementary school geometry education in the Netherlands, sketches the elementary school geometry education based on the Realistic Mathematics Education in the Netherlands by reflecting general goals of the mathematics education, the core goals for geometry strand of the Netherlands, and geometry and spatial orientation strand of Dutch Pluspunt textbook series for the elementary school more concretely. Under these reflections on the documents, it is analyzed what is the characteristics of geometry strand in the Netherlands as follows: emphasis on realistic spatial phenomenon, intuitive and informal approach, progressive approach from intuitive activity to spatial reasoning, intertwinement of mathematics strands and other disciplines, emphasis on interaction of the students, cyclical repetition of experiencing phase, explaining phases, and connecting phase. Finally, discussing points for improving our elementary school geometry curriculum and textbook series development are described as follows: introducing spatial orientation and emphasizing spatial visualization and spatial reasoning with respect to the instruction contents, considering balancing between approach stressing on grasping space and approach stressing on logical structure of geometry, intuitive approach, and integrating mathematics strands and other disciplines with respect to the instruction method.

  • PDF

Remediation of buried pipeline system subject to ground rupture using low-density backfill (경량채움재를 활용한 지반영구변위에 대한 지중관 시스템의 개량기법)

  • Choo, Yun-Wook;Abdoun, T.H.;O'Rourke, M.J.;Ha, D.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.553-562
    • /
    • 2008
  • A remediation technique for buried pipeline system subject to permanent ground deformation is proposed. Specifically, EPS (expanded polystyrene) geofoam blocks are used as low density backfill, thereby reducing soil restraint and pipeline strains. In order to evaluate this remediation technique, a series of 12 centrifuge model tests with HDPE pipe were performed. The amount or spatial extent of the low density backfill was varied, as well as the orientation of the pipe with respect to the fault offset. Specifically, in the $-63.5^{\circ}$ test, the orientation was such that the pipe was placed in flexure and axial tension. The $-85^{\circ}$ orientation placed the pipe mainly in flexure. In all cases, the behavior of the remediated pipe was compared to that for the unremediated pipe. The geofoam backfill was successful in improving pipe behavior for two of the three pipe/fault orientations. However, for the $60^{\circ}$ orientation, the pipe buckled in compression irrespective of the geofoam backfill.

  • PDF

The design of 4S-Van for implementation of ground-laser mapping system (지상 레이져 매핑시스템 구현을 위한 4S-Van 시스템 설계)

  • 김성백;이승용;김민수
    • Spatial Information Research
    • /
    • v.10 no.3
    • /
    • pp.407-419
    • /
    • 2002
  • In this study, the design of 4S-Van system is discussed fur the implementation of laser mapping system. Laser device is fast and accurate sensor that acquires 3D road and surface data. The orientation laser sensor is determined by loosely coupled (D)GPS/INS Integration. Considering current system architecture, (D)GPS/INS integration is performed far performance analysis of direct georeferencing and self-calibration is performed for interior and exterior orientation and displacement. We utilized 3 laser sensors for compensation and performance improvement. 3D surface data from laser scanner and texture image from CCD camera can be used to implement 3D visualization.

  • PDF

Characterization of the Spatial Variability of Paper Formation Using a Continuous Wavelet Transform

  • Keller, D.Steven;Luner, Philip;Pawlak, Joel J.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.14-25
    • /
    • 2000
  • In this investigation, a wavelet transform analysis was used to decompose beta-radiographic formation images into spectral and spatial components. Conventional formation analysis may use spectral analysis, based on Fourier transformation or variance vs. zone size, to describe the grammage distribution of features such as flocs, streaks and mean fiber orientation. However, these methods have limited utility for the analysis of statistically stationary data sets where variance is not uniform with position, e.g. paper machine CD profiles (especially those that contain streaks). A continuous wavelet transform was used to analyze formation data arrays obtained from radiographic imaging of handsheets and cross machine paper samples. The response of the analytical method to grammage, floc size distribution, mean fiber orientation an sensitivity to feature localization were assessed. From wavelet analysis, the change in scale of grammage variation as a function of position was used to demonstrate regular and isolated differences in the formed structure.

  • PDF