• Title/Summary/Keyword: Spatial images

Search Result 2,489, Processing Time 0.03 seconds

Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data (KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교)

  • Chung, Minkyung;Han, Youkyung;Choi, Jaewan;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1427-1443
    • /
    • 2018
  • Object-based image analysis (OBIA) allows higher computation efficiency and usability of information inherent in the image, as it reduces the complexity of the image while maintaining the image properties. Superpixel methods oversegment the image with a smaller image unit than an ordinary object segment and well preserve the edges of the image. SLIC (Simple linear iterative clustering) is known for outperforming the previous superpixel methods with high image segmentation quality. Although the input parameter for SLIC, number of superpixels has considerable influence on image segmentation results, impact analysis for SLIC parameter has not been investigated enough. In this study, we performed optimal parameter analysis and evaluation of change detection for SLIC-based superpixel techniques using KOMPSAT data. Forsuperpixel generation, three superpixel methods (SLIC; SLIC0, zero parameter version of SLIC; SNIC, simple non-iterative clustering) were used with superpixel sizes in ranges of $5{\times}5$ (pixels) to $50{\times}50$ (pixels). Then, the image segmentation results were analyzed for how well they preserve the edges of the change detection reference data. Based on the optimal parameter analysis, image segmentation boundaries were obtained from difference image of the bi-temporal images. Then, DBSCAN (Density-based spatial clustering of applications with noise) was applied to cluster the superpixels to a certain size of objects for change detection. The changes of features were detected for each superpixel and compared with reference data for evaluation. From the change detection results, it proved that better change detection can be achieved even with bigger superpixel size if the superpixels were generated with high regularity of size and shape.

A Study on the Improvement of Satellite Image Information Service System (위성영상정보 서비스 시스템 개선방안 연구)

  • Cho, Bo-Hyun;Yang, Keum-Cheol;Kim, Song-Gang;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.41-47
    • /
    • 2017
  • The Marine Environment Observation Information System supplies oceanographic information elements such as water temperature, chlorophyll, float, etc. based on satellite images to consumers. The data produced by the Korean marine environmental observatories are located in the coastal areas of Korea. But if the range is too far from a particular area of interest, due to distance or spatial constraints, the accuracy and up-to-dateness of the data can not be relied upon. Therefore, it is necessary to perform fusion and complex operation to solve the difference between the field observation and the marine satellite image. In this study, we develop a system that can process marine environmental information in the user's area of interest in the form of layered character (numeric) information considering the readability and light weight rather than the satellite image. In order to intuitively understand satellite image information, we characterize (quantify) the marine environmental information of the area of interest and we process the satellite image band values into layered characters to minimize the absolute amount of transmitted / received data. Also we study modular location-based interest information service method to be able to flexibly extend and connect interested items that diversify various observation fields as well as application technology to serve this.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

Meteorological drought outlook with satellite precipitation data using Bayesian networks and decision-making model (베이지안 네트워크 및 의사결정 모형을 이용한 위성 강수자료 기반 기상학적 가뭄 전망)

  • Shin, Ji Yae;Kim, Ji-Eun;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.279-289
    • /
    • 2019
  • Unlike other natural disasters, drought is a reoccurring and region-wide phenomenon after being triggered by a prolonged precipitation deficiency. Considering that remote sensing products provide consistent temporal and spatial measurements of precipitation, this study developed a remote sensing data-based drought outlook model. The meteorological drought was defined by the Standardized Precipitation Index (SPI) achieved from PERSIANN_CDR, TRMM 3B42 and GPM IMERG images. Bayesian networks were employed in this study to combine the historical drought information and dynamical prediction products in advance of drought outlook. Drought outlook was determined through a decision-making model considering the current drought condition and forecasted condition from the Bayesian networks. Drought outlook condition was classified by four states such as no drought, drought occurrence, drought persistence, and drought removal. The receiver operating characteristics (ROC) curve analysis were employed to measure the relative outlook performance with the dynamical prediction production, Multi-Model Ensemble (MME). The ROC analysis indicated that the proposed outlook model showed better performance than the MME, especially for drought occurrence and persistence of 2- and 3-month outlook.

Comparison of Open Source based Algorithms and Filtering Methods for UAS Image Processing (오픈소스 기반 UAS 영상 재현 알고리즘 및 필터링 기법 비교)

  • Kim, Tae Hee;Lee, Yong Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.155-168
    • /
    • 2020
  • Open source is a key growth engine of the 4th industrial revolution, and the continuous development and use of various algorithms for image processing is expected. The purpose of this study is to examine the effectiveness of the UAS image processing open source based algorithm by comparing and analyzing the water reproduction and moving object filtering function and the time required for data processing in 3D reproduction. Five matching algorithms were compared based on recall and processing speed through the 'ANN-Benchmarks' program, and HNSW (Hierarchical Navigable Small World) matching algorithm was judged to be the best. Based on this, 108 algorithms for image processing were constructed by combining each methods of triangulation, point cloud data densification, and surface generation. In addition, the 3D reproduction and data processing time of 108 algorithms for image processing were studied for UAS (Unmanned Aerial System) images of a park adjacent to the sea, and compared and analyzed with the commercial image processing software 'Pix4D Mapper'. As a result of the study, the algorithms that are good in terms of reproducing water and filtering functions of moving objects during 3D reproduction were specified, respectively, and the algorithm with the lowest required time was selected, and the effectiveness of the algorithm was verified by comparing it with the result of 'Pix4D Mapper'.

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.

Study on Detection for Cochlodinium polykrikoides Red Tide using the GOCI image and Machine Learning Technique (GOCI 영상과 기계학습 기법을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Unuzaya, Enkhjargal;Bak, Su-Ho;Hwang, Do-Hyun;Jeong, Min-Ji;Kim, Na-Kyeong;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1089-1098
    • /
    • 2020
  • In this study, we propose a method to detect red tide Cochlodinium Polykrikoide using by machine learning and geostationary marine satellite images. To learn the machine learning model, GOCI Level 2 data were used, and the red tide location data of the National Fisheries Research and Development Institute was used. The machine learning model used logistic regression model, decision tree model, and random forest model. As a result of the performance evaluation, compared to the traditional GOCI image-based red tide detection algorithm without machine learning (Son et al., 2012) (75%), it was confirmed that the accuracy was improved by about 13~22%p (88~98%). In addition, as a result of comparing and analyzing the detection performance between machine learning models, the random forest model (98%) showed the highest detection accuracy.It is believed that this machine learning-based red tide detection algorithm can be used to detect red tide early in the future and track and monitor its movement and spread.

Automatic Construction of Deep Learning Training Data for High-Definition Road Maps Using Mobile Mapping System (정밀도로지도 제작을 위한 모바일매핑시스템 기반 딥러닝 학습데이터의 자동 구축)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.133-139
    • /
    • 2021
  • Currently, the process of constructing a high-definition road map has a high proportion of manual labor, so there are limitations in construction time and cost. Research to automate map production with high-definition road maps using artificial intelligence is being actively conducted, but since the construction of training data for the map construction is also done manually, there is a need to automatically build training data. Therefore, in this study, after converting to images using point clouds acquired by a mobile mapping system, the road marking areas were extracted through image reclassification and overlap analysis using thresholds. Then, a methodology was proposed to automatically construct training data for deep learning data for the high-definition road map through the classification of the polygon types in the extracted regions. As a result of training 2,764 lane data constructed through the proposed methodology on a deep learning-based PointNet model, the training accuracy was 99.977%, and as a result of predicting the lanes of three color types using the trained model, the accuracy was 99.566%. Therefore, it was found that the methodology proposed in this study can efficiently produce training data for high-definition road maps, and it is believed that the map production process of road markings can also be automated.

DECODE: A Novel Method of DEep CNN-based Object DEtection using Chirps Emission and Echo Signals in Indoor Environment (실내 환경에서 Chirp Emission과 Echo Signal을 이용한 심층신경망 기반 객체 감지 기법)

  • Nam, Hyunsoo;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.59-66
    • /
    • 2021
  • Humans mainly recognize surrounding objects using visual and auditory information among the five senses (sight, hearing, smell, touch, taste). Major research related to the latest object recognition mainly focuses on analysis using image sensor information. In this paper, after emitting various chirp audio signals into the observation space, collecting echoes through a 2-channel receiving sensor, converting them into spectral images, an object recognition experiment in 3D space was conducted using an image learning algorithm based on deep learning. Through this experiment, the experiment was conducted in a situation where there is noise and echo generated in a general indoor environment, not in the ideal condition of an anechoic room, and the object recognition through echo was able to estimate the position of the object with 83% accuracy. In addition, it was possible to obtain visual information through sound through learning of 3D sound by mapping the inference result to the observation space and the 3D sound spatial signal and outputting it as sound. This means that the use of various echo information along with image information is required for object recognition research, and it is thought that this technology can be used for augmented reality through 3D sound.

Analysis of Changes in the Land Surface Temperature according to Tree Planting Campaign to reduce Urban Heat Island - A Case Study for Gumi, South Korea - (도시열섬 완화를 위한 나무심기운동에 따른 지표면 온도 변화 분석 - 구미시를 사례로 -)

  • KIM, Kyunghun;KIM, Hung Soo;KWON, Yong-Ha;PARK, Insun;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.16-27
    • /
    • 2022
  • Due to climate change, temperature is rising worldwide. Since rapid growth has been achieved focused on cities, South Korea is experiencing serious environmental problems such as heat island and air pollution in urban areas. To solve this problem, the central and each local government are actively promoting tree planting campaigns. This study quantitatively calculated changes in green areas and vegetation of Gumi by the tree planting campaign, and analyzed the temperature changes accordingly. For the target area, the green area, vegetation index, and ground temperature were calculated for 4 different time periods using the given Landsat satellite images. As a result of the study, the green area of was increased by 7.24km2 and 4.93km2 for two regions, respectively. Accordingly, the vegetation index increased by 0.14 to 0.16, and the temperature decreased by 0.8 to 1.2℃. The Tree planting campaign not only plays a role in lowering the temperature of the city but also does various roles such as air purification, carbon absorption, and providing green rest areas to citizens. Therefore the campaign should be carried out continuously.