• Title/Summary/Keyword: Spatial images

Search Result 2,489, Processing Time 0.033 seconds

The Changing Characteristics of Office Location in Central Seoul (서울 도심 사무활동입지의 변화와 특성)

  • Kee-Bom Nahm
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.85-102
    • /
    • 1998
  • The Changing Characteristics of Office Location in Central Seoul In recent years, central Seoul has been experiencing a dynamic transformation. In the process of reorganization of urban industrial structure including tertiarization and quaternarization of the economic base of Seoul, business services are growing very rapidly and large scale urban renewal projects are agilely implemented. Downtown office activities become a nucleus for economic performance of Seoul and high-rise office buildings steer the landscape transformation of central Seoul. Even though there appear to exist some evidences that office districts have dispersed to several subcenters, major office activities are still concentrated in the central Seoul. This paper redefines office industry in a narrow meaning comprising only relevant economic sectors and office buildings as office activity-functioning units. It then explores the industrial networking and territorial specialization of office activities focusing on the dual process of concentration and dispersion in Seoul. The changing characteristics of the downtown linkages of office activities in this post-industrial era transforms the spatial economy of central Seoul into more flexible and volatile, while territorial concentration of power and control functions are fortified at the same time. Finally, the paper addresses the development of manufacturing-tertiary-quaternary industrial complex, which can be regarded as new industrial clusters, selling cultural economy of urban space and possessing placeness or images for clients and customers, in relation to urban competitiveness and territorial specialization of large metropolitan areas.

  • PDF

The Effect of Acoustic Velocity of Ultrasonographic Equipment Using an N-365 Multipurpose Phantom (N-365 다목적팬텀에서 초음파진단장치의 음속변화 효과)

  • Kim, Yon-Min;Shim, Jae-Goo;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.221-225
    • /
    • 2017
  • To evaluate the performance of ultrasound imaging system, we investigated the change of spatial resolution according to changing sonic velocity change parameter provided by ultrasound equipment. Ultrasound phantom images were obtained using a 3.0 ~ 5.0 MHz convex transducer in an ultrasound diagnostic device used at a medical institution located at Iksan. N-365 multi-purpose ultrasound phantom was used to measure longitudinal distance measurement accuracy and longitudinal and transverse resolution. In the same manner, the sonic velocity of the ultrasound equipment was changed from 1580 m/sec to 1400 m/sec in six steps, and the full width at half maximum(FWHM) was measured using the image J program to determine whether the measured values were different. As a result, lateral resolution was measured from 1.91 mm to 5.3 mm according to the speed change, and the smallest FWHM was 1.91 mm at 1420 m/sec. The axial resolution was measured from 1.03 mm to 1.14 mm according to the speed change, and the smallest FWHM was 1.03 mm at 1400 m/sec. The slower the sound velocity of the ultrasound equipment, the shorter the length of longitudinal measurement.

Integrated Color Matching in Stereoscopic Image by Combining Local and Global Color Compensation (지역과 전역적인 색보정을 결합한 스테레오 영상에서의 색 일치)

  • Shu, Ran;Ha, Ho-Gun;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.168-175
    • /
    • 2013
  • Color consistency in stereoscopic contents is important for 3D display systems. Even with a stereo camera of the same model and with the same hardware settings, complex color discrepancies occur when acquiring high quality stereo images. In this paper, we propose an integrated color matching method that use cumulative histogram in global matching and estimated 3D-distance for the stage of local matching. The distance between the current pixel and the target local region is computed using depth information and the spatial distance in the 2D image plane. The 3D-distance is then used to determine the similarity between the current pixel and the target local region. The overall algorithm is described as follow; First, the cumulative histogram matching is introduced for reducing global color discrepancies. Then, the proposed local color matching is established for reducing local discrepancies. Finally, a weight-based combination of global and local matching is computed. Experimental results show the proposed algorithm has improved global and local error correction performance for stereoscopic contents with respect to other approaches.

Content-based Image Retrieval Using Color Adjacency and Gradient (칼라 인접성과 기울기를 이용한 내용 기반 영상 검색)

  • Jin, Hong-Yan;Lee, Ho-Young;Kim, Hee-Soo;Kim, Gi-Seok;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.104-115
    • /
    • 2001
  • A new content-based color image retrieval method integrating the features of the color adjacency and the gradient is proposed in this paper. As the most used feature of color image, color histogram has its own advantages that it is invariant to the changes in viewpoint and the rotation of the image etc., and the computation of the feature is simple and fast. However, it is difficult to distinguish those different images having similar color distributions using histogram-based image retrieval, because the color histogram is generated on uniformly quantized colors and the histogram itself contains no spatial information. And another shortcoming of the histogram-based image retrieval is the storage of the features is usually very large. In order to prevent the above drawbacks, the gradient that is the largest color difference of neighboring pixels is calculated in the proposed method instead of the uniform quantization which is commonly used at most histogram-based methods. And the color adjacency information which indicates major color composition feature of an image is extracted and represented as a binary form to reduce the amount of feature storage. The two features are integrated to allow the retrieval more robust to the changes of various external conditions.

  • PDF

Development of portable digital radiography system with device for sensing X-ray source-detector angle and its application in chest imaging (엑스선촬영 각도를 측정할 수 있는 장치 개발과 흉부 X선 영상촬영에서의 적용)

  • Kim, Tae-Hoon;Heo, Dong-Woon;Ryu, Jong-Hyun;Jeong, Chang-Won;Jun, Hong Young;Kim, Kyu Gyeom;Hong, Jee Min;Jang, Mi Yeon;Kim, Dae Won;Yoon, Kwon-Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.235-238
    • /
    • 2017
  • This study was to develop a portable digital radiography (PDR) system with a function measuring the X-ray source-with-detector angle (SDA) and to evaluate the imaging performance for the diagnosis of chest imaging. The SDA device consisted of an Arduino, an accelerometer and gyro sensor, and a Bluetooth module. According to different angle degrees, five anatomical landmarks on chest images were assessed using a 5-point scale. Mean signal-to-noise ratio and contrast-to-noise ratio were 182.47 and 141.43. Spatial resolution (10% MTF) and entrance surface dose were 3.17 lp/mm ($157{\mu}m$) and 0.266mGy. The angle values of SDA device were not significant difference as compared to those of the digital angle meter. In chest imaging, SNR and CNR values were not significantly different according to different angle degrees (repeated-measures ANOVA, p>0.05). The visibility scores of the border of heart, 5th rib and scapula showed significant differences according to different angles (rmANOVA, p<0.05), whereas the scores of the clavicle and 1st rib were not significant. It is noticeable that the increase in SDA degree was consistent with the increase of visibility score. Our PDR with SDA device would be useful to be applicable to clinical radiography setting according to the standard radiography guideline at various fields.

  • PDF

A Study on the Detection of Small Cavity Located in the Hard Rock by Crosswell Seismic Survey (경암 내 소규모 공동 탐지를 위한 시추공간 탄성파탐사 기법의 적용성 연구)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • For the dectection of small cavity in the hard rock, we investigated the feasibility of crosswell travel-time tomography and Kirchhoff migration technique. In travel-time tomography, first arrival anomaly caused by small cavity was investigated by numerical modeling based on the knowledge of actual field information. First arrival delay was very small (<0.125 msec) and detectable receiver offset range was limited to 4m with respect to $1\%$ normalized first arrival anomaly. As a consequence, it was turned out that carefully designed survey array with both sufficient narrow spatial spacing and temporal (<0.03125 msec) sampling were required for small cavity detection. Also, crosswell Kirchhoff migration technique was investigated with both numerical and real data. Stack section obtained by numerical data shows the good cavity image. In crosswell seismic data, various unwanted seismic events such as direct wave and various mode converted waves were alto recorded. To remove these noises und to enhance the diffraction signal, combination of median and bandpass filtering was applied and prestack and stacked migration images were created. From this, we viewed the crosswell migration technique as one of the adoptable method for small cavity detection.

Acquisition of Monochromatic X-ray Using Multilayer Mirror (다층박막 거울을 이용한 단색 엑스선 획득)

  • Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • A hard X-ray microscope system for obtaining images of nano-spatial resolution has been widely studied and requires monochromatic X-ray. A multilayer mirror of 84% reflectivity was designed to acquire tungsten characteristic X-ray of 8.4 keV from the white beam generated from an X-ray tube, and the C/W multilayer mirror of $50{\times}50\;mm$ size and 5.65 nm d-spacing was fabricated by the ion-beam sputtering system. The C/W multilayer had a uniformity of 99.5%, and the structure of the multilayer mirror was verified by a TEM image. The obtainable x-ray reflectivity for the C/W multilayer mirror at 8.4 keV was estimated from measuring the X-ray reflectivity using the copper characteristic X-ray of 8.05 keV. Monochromatic X-ray of 8.4 keV was generated by combining a X-ray tube, and the reflectivity and monochromaticity were 77.1% and 0.21 keV, respectively. Monochromatic X-ray generated from the combination of an X-ray tube and an C/W multilayer mirror has enough potential to use X-ray source for hard X-ray microscope system of laboratory size. If the C/W multilayer mirror of d-spacing of a few nanometers can be fabricated, monochromatic X-ray corresponded to 17.5 keV, molybdenum characteristic X-ray, can be obtained and applied to mammography in the medical application.

A Study for Effects of Image Quality due to Scatter Ray produced by Increasing of Tube Voltage (관전압 증가에 기인한 산란선 발생의 화질 영향 연구)

  • Park, Ji-Koon;Jun, Je-Hoon;Yang, Sung-Woo;Kim, Kyo-Tae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.663-669
    • /
    • 2017
  • In diagnostic medical imaging, it is essential to reduce the scattered radiation for the high medical image quality and low patient dose. Therefore, in this study, the influence of the scattered radiation on medical images was analyzed as the tube voltage increases. For this purpose, ANSI chest phantom was used to measure the scattering ratio, and the scattering effect on the image quality was investigated by RMS evaluation, RSD and NPS analysis. It was found that the scattering ratio with increasing x-ray tube voltage gradually increased to 48.8% at 73 kV tube voltage and to 80.1% at 93 kV tube voltage. As a result of RMS analysis for evaluating the image quality, RMS value according to increase of tube voltage was increased, resulting in low image quality. Also, the NPS value at 2.5 lp/mm spatial frequency was increased by 20% when the tube voltage was increased by 93 kV compared to the tube voltage of 73 kV. From this study, it can be seen that the scattering radiation have a significant effect on the image quality according to the increase of x-ray tube voltage. The results of this study can be used as basic data for the improvement of medical imaging quality.

Low-Complexity H.264/AVC Deblocking Filter based on Variable Block Sizes (가변블록 기반 저복잡도 H.264/AVC 디블록킹 필터)

  • Shin, Seung-Ho;Doh, Nam-Keum;Kim, Tae-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.41-49
    • /
    • 2008
  • H.264/AVC supports variable block motion compensation, multiple reference images, 1/4-pixel motion vector accuracy, and in-loop deblocking filter, compared with the existing compression technologies. While these coding technologies are major functions of compression rate improvement, they lead to high complexity at the same time. For the H.264 video coding technology to be actually applied on low-end / low-bit rates terminals more extensively, it is essential to improve tile coding speed. Currently the deblocking filter that can improve the moving picture's subjective image quality to a certain degree is used on low-end terminals to a limited extent due to computational complexity. In this paper, a performance improvement method of the deblocking filter that efficiently reduces the blocking artifacts occurred during the compression of low-bit rates digital motion pictures is suggested. In the method proposed in this paper, the image's spatial correlational characteristics are extracted by using the variable block information of motion compensation; the filtering is divided into 4 modes according to the characteristics, and adaptive filtering is executed in the divided regions. The proposed deblocking method reduces the blocking artifacts, prevents excessive blurring effects, and improves the performance about $30{\sim}40%$ compared with the existing method.

Automatic Tumor Segmentation Method using Symmetry Analysis and Level Set Algorithm in MR Brain Image (대칭성 분석과 레벨셋을 이용한 자기공명 뇌영상의 자동 종양 영역 분할 방법)

  • Kim, Bo-Ram;Park, Keun-Hye;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2011
  • In this paper, we proposed the method to detect brain tumor region in MR images. Our method is composed of 3 parts, detection of tumor slice, detection of tumor region and tumor boundary detection. In the tumor slice detection step, a slice which contains tumor regions is distinguished using symmetric analysis in 3D brain volume. The tumor region detection step is the process to segment the tumor region in the slice distinguished as a tumor slice. And tumor region is finally detected, using spatial feature and symmetric analysis based on the cluster information. The process for detecting tumor slice and tumor region have advantages which are robust for noise and requires less computational time, using the knowledge of the brain tumor and cluster-based on symmetric analysis. And we use the level set method with fast marching algorithm to detect the tumor boundary. It is performed to find the tumor boundary for all other slices using the initial seeds derived from the previous or later slice until the tumor region is vanished. It requires less computational time because every procedure is not performed for all slices.