• Title/Summary/Keyword: Spatial images

Search Result 2,489, Processing Time 0.039 seconds

A Quick-and-dirty Method for Detection of Ground Moving Targets in Single-Channel SAR Single-Look Complex (SLC) Images by Differentiation (미분을 이용한 단일채널 SAR SLC 영상 내 지상 이동물체의 탐지방법)

  • Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.185-205
    • /
    • 2014
  • SAR ground moving target indicator (GMTI) has long been an important issue for SAR advanced applications. As spatial resolution of space-borne SAR system has been significantly improved recently, the GMTI becomes a very useful tool. Various GMTI techniques have been developed particularly using multi-channel SAR systems. It is, however, still problematic to detect ground moving targets within single channel SAR images while it is not practical to access high resolution multi-channel space-borne SAR systems. Once a ground moving target is detected, it is possible to retrieve twodimensional velocities of the target from single channel space-borne SAR with an accuracy of about 5 % if moving faster than 3 m/s. This paper presents a quick-and-dirty method for detecting ground moving targets from single channel SAR single-look complex (SLC) images by differentiation. Since the signal powers of derivatives present Doppler centroid and rate, it is very efficient and effective for detection of non-stationary targets. The derivatives correlate well with velocities retrieved by a precise method with a correlation coefficient $R^2$ of 0.62, which is well enough to detect the ground moving targets. While the approach is theoretically straightforward, it is necessary to remove the effects of residual Doppler rate before finalizing the ground moving target candidates. The confidence level of results largely depends on the efficiency and effectiveness of the residual Doppler rate removal method. Application results using TerraSAR-X and truck-mounted corner reflectors validated the efficiency of the method. While the derivatives of moving targets remain easily detectable, the signal energy of stationary corner reflectors was suppressed by about 18.5 dB. It results in an easy detection of ground targets moving faster than 8.8 km/h. The proposed method is applicable to any high resolution single channel SAR systems including KOMPSAT-5.

A Methodology of Ship Detection Using High-Resolution Satellite Optical Image (고해상도 광학 인공위성 영상을 활용한 선박탐지 방법)

  • Park, Jae-Jin;Oh, Sangwoo;Park, Kyung-Ae;Lee, Min-Sun;Jang, Jae-Cheol;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • As the international trade increases, vessel traffics around the Korean Peninsula are also increasing. Maritime accidents hence take place more frequently in the southern coast of Korea where many big and small ports are located. Accidents involving ship collision and sinking result in a substantial human and material damage as well as the marine environmental pollution. Therefore, it is necessary to locate the ships quickly when such accidents occur. In this study, we suggest a new ship detection index by comparing and analyzing the reflectivity of each channel of the Korea MultiPurpose SATellite-2 (KOMPSAT-2) images of the area around the Gwangyang Bay. A threshold value of 0.1 is set based on a histogram analysis, and all vessels are detected when compared with RGB composite images. After selecting a relatively large ship as a representative sample, the distribution of spatial reflectivity around the ship is studied. Uniform shadows are detected on the northwest side of the vessel. This indicates that the sun is in the southeast, the azimuth of the actual satellite image is $144.80^{\circ}$, and the azimuth angle of the sun can be estimated using the shadow position. The reflectivity of the shadows is 0.005 lower than the surrounding sea and ship. The shadow height varies with the position of the bow and the stern, perhaps due to the relative heights of the ship deck and the structure. The results of this study can help search technology for missing vessels using optical satellite images in the event of a marine accident around the Korean Peninsula.

A Study of Textured Image Segmentation using Phase Information (페이즈 정보를 이용한 텍스처 영상 분할 연구)

  • Oh, Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • Finding a new set of features representing textured images is one of the most important studies in textured image analysis. This is because it is impossible to construct a perfect set of features representing every textured image, and it is inevitable to choose some relevant features which are efficient to on-going image processing jobs. This paper intends to find relevant features which are efficient to textured image segmentation. In this regards, this paper presents a different method for the segmentation of textured images based on the Gabor filter. Gabor filter is known to be a very efficient and effective tool which represents human visual system for texture analysis. Filtering a real-valued input image by the Gabor filter results in complex-valued output data defined in the spatial frequency domain. This complex value, as usual, gives the module and the phase. This paper focused its attention on the phase information, rather than the module information. In fact, the module information is considered very useful at region analysis in texture, while the phase information was considered almost of no use. But this paper shows that the phase information can also be fully useful and effective at region analysis in texture, once a good method introduced. We now propose "phase derivated method", which is an efficient and effective way to compute the useful phase information directly from the filtered value. This new method reduces effectively computing burden and widen applicable textured images.

Performance Characteristics of MicroPET R4 Scanner for Small Animal Imaging (소동물 영상을 위한 MicroPET R4스캐너의 특성평가)

  • Lee, Byeong-Il;Lee, Jae-Sung;Kim, Jin-Su;Lee, Dong-Soo;Choi, Chang-Un;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • Purpose: Dedicated animal PET is useful equipment for the study of new PET tracer. recently, microPET R4 was installed in the Korea institute of radiology and medical science. In this study, we measured the characteristics of scanner. Materials and methods: Resolution was measured using a line source (F-18:65 ${\mu}Ci$, inner diameter: 0.5 mm). The line source was put in the axial direction and was moved from the center of field of view to outside with 1 mm interval. PET images were reconstructed using a filtered back-protection and ordered subset expectation maximization. line source (16.5 ${\mu}Ci$, 78 mm) was put on the tenter of axial direction to measure the sensitivity when the deadtime was under 1%. Images were acquired during 4 minutes respectively from center to 39 mm outward. Delayed count was subtracted from total count and then decay was corrected for the calculation of sensitivity. Noise equivalent count ratio and scatter fraction were calculated using cylindrical phantom. Results: Spatial resolution of reconstructed image using filtered back-projection was 1.86 mm(radial), 1.95 mm(tangential), 1.95 mm(axial) in the tenter of field of view, and 2.54 mm, 2.8 mm, 1.61 mm in 2 cm away from the center respectively. Sensitivity was 2.36% at the center of transaxial field of view. Scatter fraction was 20%. Maximal noise equivalent count ratio was 66.4 kcps at 242 kBq/mL. Small animal images were acquired for confirmation of performance. Conclusion: Performance characteristics of microPET R4 were similar with reported value. So this will be a useful tool for small animal imaging.

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.

Validation of GOCI-II Products in an Inner Bay through Synchronous Usage of UAV and Ship-based Measurements (드론과 선박을 동시 활용한 내만에서의 GOCI-II 산출물 검증)

  • Baek, Seungil;Koh, Sooyoon;Lim, Taehong;Jeon, Gi-Seong;Do, Youngju;Jeong, Yujin;Park, Sohyeon;Lee, Yongtak;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.609-625
    • /
    • 2022
  • Validation of satellite data products is critical for subsequent analysis that is based on the data. Particularly, performance of ocean color products in turbid and shallow near-land ocean areas has been questioned for long time for its difficulty that stems from the complex optical environment with varying distribution of water constituents. Furthermore, validation with ship-based or station-based measurements has also exhibited clear limitation in its spatial scale that is not compatible with that of satellite data. This study firstly performed validation of major GOCI-II products such as remote sensing reflectance, chlorophyll-a concentration, suspended particulate matter, and colored dissolved organic matter, using the in-situ measurements collected from ship-based field campaign. Secondly, this study also presents preliminary analysis on the use of drone images for product validation. Multispectral images were acquired from a MicaSense RedEdge camera onboard a UAV to compensate for the significant scale difference between the ship-based measurements and the satellite data. Variation of water radiance in terms of camera altitude was analyzed for future application of drone images for validation. Validation conducted with a limited number of samples showed that GOCI-II remote sensing reflectance at 555 nm is overestimated more than 30%, and chlorophyll-a and colored dissolved organic matter products exhibited little correlation with in-situ measurements. Suspended particulate matter showed moderate correlation with in-situ measurements (R2~0.6), with approximately 20% uncertainty.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Analysis of Waterbody Changes in Small and Medium-Sized Reservoirs Using Optical Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 광학 위성영상을 이용한 중소규모 저수지 수체 변화 분석)

  • Younghyun Cho;Joonwoo Noh
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Waterbody change detection using satellite images has recently been carried out in various regions in South Korea, utilizing multiple types of sensors. This study utilizes optical satellite images from Landsat and Sentinel-2 based on Google Earth Engine (GEE) to analyze long-term surface water area changes in four monitored small and medium-sized water supply dams and agricultural reservoirs in South Korea. The analysis covers 19 years for the water supply dams and 27 years for the agricultural reservoirs. By employing image analysis methods such as normalized difference water index, Canny Edge Detection, and Otsu'sthresholding for waterbody detection, the study reliably extracted water surface areas, allowing for clear annual changes in waterbodies to be observed. When comparing the time series data of surface water areas derived from satellite images to actual measured water levels, a high correlation coefficient above 0.8 was found for the water supply dams. However, the agricultural reservoirs showed a lower correlation, between 0.5 and 0.7, attributed to the characteristics of agricultural reservoir management and the inadequacy of comparative data rather than the satellite image analysis itself. The analysis also revealed several inconsistencies in the results for smaller reservoirs, indicating the need for further studies on these reservoirs. The changes in surface water area, calculated using GEE, provide valuable spatial information on waterbody changes across the entire watershed, which cannot be identified solely by measuring water levels. This highlights the usefulness of efficiently processing extensive long-term satellite imagery data. Based on these findings, it is expected that future research could apply this method to a larger number of dam reservoirs with varying sizes,shapes, and monitoring statuses, potentially yielding additional insights into different reservoir groups.

Evaluation of HalcyonTM Fast kV CBCT effectiveness in radiation therapy in cervical cancer patients of childbearing age who performed ovarian transposition (난소전위술을 시행한 가임기 여성의 자궁경부암 방사선치료 시 난소선량 감소를 위한 HalcyonTM Fast kV CBCT의 유용성 평가 : Phantom study)

  • Lee Sung Jae;Shin Chung Hun;Choi So Young;Lee Dong Hyeong;Yoo Soon Mi;Song Heung Gwon;Yoon In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.73-82
    • /
    • 2022
  • Purpose: The purpose of this study is to evaluate the effectiveness of reducing the absorbed dose to the ovaries and the quality of the CBCT image when using the HalcyonTM Fast kV CBCT of cervical cancer patients of child-bearing age who performed ovarian transposition Materials and Methods : Contouring of the cervix and ovaries required for measurement was performed on the computed tomography images of the human phantom (Alderson Rando Phantom, USA), and three Optically Stimulated Luminescence Dosimeter(OSLD) were attached to the selected organ cross-section, respectively. In order to measure the absorbed dose to the cervix and ovaries in the TruebeamTM pelvis mode (Hereinafter referred to as TP), The HalcyonTM Pelvis mode (Hereinafter referred to as HP) and The HalcyonTM Pelvis Fast mode (Hereinafter referred to as HPF), An image was taken with a scan range of 17.5 cm and also taken an image that reduced the Scan range to 12.5cm. A total of 10 cumulative doses were summed, It was replaced with a value of 23 Fx, the number of cervical cancer treatments, and compared In additon, uniformity, low contrast visibility, spatial resolution, and geometric distortion were compared and analyzed using Catphan 504 phantom to compare CBCT image quality between equipment. Each factor was repeatedly measured three times, and the average value was obtained by analysing with the Doselab (Mobius Medical Systems, LP. Versions: 6.8) program. Results: As a result of measuring absorbed dose by CBCT with OSLD, TP and HP did not obtain significant results under the same conditions. The mode showing the greatest reduction value was HPF versus TP. In HPF, the absorbed dose was reduced by 39.8% in the cervix and 19.8% in the ovary compared to the TP in the scan range of 17.5 cm. the scan range was reduced to 12.5 cm, absorbed dose was reduced by 34.2% in the cervix and 50.5% in the ovary. In addition, result of evaluating the quality of the image used in the above experiment, it complied with the equipment manufacturer's standards with Geometric Distortion within 1mm (SBRT standard), Uniformity HU, LCV within 2.0%, Spatial Resolution more than 3 lp/mm. Conclusion: According to the results of this experiment, HalcyonTM can select more various conditions than TruebeamTM in treatment of fertility woman who have undergone ovarian Transposition , because it is important to reduce the radiation dose by CBCT during radiation therapy. So finally we recommend HalcyonTM Fast kV CBCT which maintains image quality even at low mAs. However, it is consider that the additional exposure to low doses can be reduced by controlling the imaging range for patients who have undergone ovarian transposition in other treatment machines.

An Efficient Block Segmentation and Classification Method for Document Image Analysis Using SGLDM and BP (공간의존행렬과 신경망을 이용한 문서영상의 효과적인 블록분할과 유형분류)

  • Kim, Jung-Su;Lee, Jeong-Hwan;Choe, Heung-Mun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.937-946
    • /
    • 1995
  • We proposed and efficient block segmentation and classification method for the document analysis using SGLDM(spatial gray level dependence matrix) and BP (back Propagation) neural network. Seven texture features are extracted directly from the SGLDM of each gray-level block image, and by using the nonlinear classifier of neural network BP, we can classify document blocks into 9 categories. The proposed method classifies the equation block, the table block and the flow chart block, which are mostly composed of the characters, out of the blocks that are conventionally classified as non-character blocks. By applying Sobel operator on the gray-level document image beforebinarization, we can reduce the effect of the background noises, and by using the additional horizontal-vertical smoothing as well as the vertical-horizontal smoothing of images, we can obtain an effective block segmentation that does not lead to the segmentation into small pieces. The result of experiment shows that a document can be segmented and classified into the character blocks of large fonts, small fonts, the character recognigible candidates of tables, flow charts, equations, and the non-character blocks of photos, figures, and graphs.

  • PDF