• Title/Summary/Keyword: Spatial gradient

Search Result 329, Processing Time 0.024 seconds

Image Reconstruction Using Poisson Model Screened from Image Gradient (이미지 기울기에서 선별된 포아송 모델을 이용한 이미지 재구성)

  • Kim, Yong-Gil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.117-123
    • /
    • 2018
  • In this study, we suggest a fast image reconstruction scheme using Poisson equation from image gradient domain. In this approach, using the Poisson equation, a guided vector field is created by employing source and target images within a selected region at the first step. Next, the guided vector is used in generating the result image. We analyze the problem of reconstructing a two-dimensional function that approximates a set of desired gradients and a data term. The joined data and gradients are able to work like modifying the image gradients while staying close to the original image. Starting with this formulation, we have a screened Poisson equation known in physics. This equation leads to an efficient solution to the problem in FFT domain. It represents the spatial filters that solve the two-dimensional screened Poisson model and shows gradient scaling to be a well-defined sharpen filter that generalizes Laplace sharpening. We demonstrate the results using a discrete cosine transformation based this Poisson model.

A Study on 3Dimensional Automatic Boundaries Detection on Medical Images or Radiation Therapy Planning (방사선 치료 계획 장치를 위한 의료 영상의 3차원적 자동 경계선 검출에 관한 연구)

  • Choi, Eun-Jin;Suh, Doug-Young
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.172-175
    • /
    • 1997
  • Outline contour is detected firstly to simulate dose distribution in radiation therapy planning system. In this paper, we developed automatic contour detection system using temporal and spatial relationships of image sequences. The low level image analysis involves the use of directional gradient edge operators and Laplacian operator. The High level portion of algorithm uses a knowledge-based strategy that incorporates fuzzy resoning method.

  • PDF

Comparative Study of GDPA and Hough Transformation for Automatic Linear Feature Extraction

  • Ryu, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.238-240
    • /
    • 2003
  • As remote sensing is weighty in GIS updating, it is indispensable to get spatial information quickly and exactly. In this study, we have designed and implemented the program by two algorithms of GDPA (Gradient Direction Profile Analysis) and Hough transformation to extract linear features automatically from high-resolution imagery. We applied the software to embody both algorithms to KOMPSAT-EOC, IKONOS, and Landsat-ETM and made a comparative study of results.

  • PDF

An Adaptive Procedure in Finite Element Analysis of Elastodynamic Problems (적응적 방법을 이용한 동적 유한요소해석)

  • 최창근;정흥진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.1-8
    • /
    • 1994
  • An automated procedure which allows adaptation of spatial and time discretization simultaneously in finite element analysis of linear elastodynamic problems is presented. For dynamic problems having responses dominated by high frequency modes, such as those with impact, explosive, traveling and earthquake loads high gradient stress regions change their locations from time to time. And the time step size may need to vary in order to deal with whole process ranging from transient phase to steady state phase. As the sizes of elements in space vary in different regions, the procedure also permits different time stepping. In such a way, the best performance attainable by the finite element method can be achieved. In this study, we estimate both of the kinetic energy error and stran energy error induced by spatial and time discretization in a consistent manner. Numerical examples are used to demonstrate the performance of the procedure.

  • PDF

Temporal and Spatial Variability of Sound Propagation Characteristics in the Northern East China Sea (동중국해 북부해역에서 음파전달 특성의 시공간적 변동성)

  • Park, Kyeongju;Chu, Peter Cheng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2015
  • Acoustic propagation in shallow water with changing environments is a major concern of navy. Temporal and spatial variability of acoustic propagation in the northern East China Sea (ECS) is studied, using the 11 years hydrographic data and the Bellhop acoustic model. Acoustic propagation in the northern ECS is highly variable due to extensive interaction of various ocean currents and boundaries. Seasonal variations of transmission loss (TL) with various source depths are highly affected by sharp gradient of sound speed and bottoms interaction. Especially, various bottom sediment types lead to severely degrading a waterborne propagation with bottom loss. In particular, the highly increased TL near the ocean front depends on the source position, and the direction of sound propagation.

A Dynamic Adaptation Technique on 2-D and 3-D Unstructured Meshes (2차원과 3차원에서의 비정렬 동적 적응격자 형성법에 관한 연구)

  • Park Y. M.;Oh W. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.146-152
    • /
    • 2000
  • Two and Three dimensional dynamic adaptation code is developed for transient computations. This code involves mesh refinement and coarsening to either add points in high gradient regions of flow or remove points where they are not needed, for high spatial accuracy. Temporary cell algorithm is used to maintain the original grid quality. To show the assessment of the accuracy and efficiency, two dimensional study and unsteady flows are computed. Also, three dimensional steady computations are made to assess the refinement using temporary cell algorithm. The result shows the high spatial accuracy primarily in discontinuity regions in steady and unsteady computation.

  • PDF

박테리아에 의한 클로깅 현상에 따른 임계 상태 균열 암반의 유체투과율 감소에 관한 전산 연구

  • 한충용;강주명;최종근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.73-76
    • /
    • 2001
  • We have simulated the effect of fracture characteristics on reduction of effective permeability of the fractured rocks due to in-situ bacteria growth. A nutrient is injected continuously for growth of in-situ bacteria. We used a power law for fracture length distribution and a fBm for fracture aperture spatial distribution. The results show that in-situ bacteria growth reduces the Permeability hyperbolically, but the porosity of backbone fracture does not change significantly. It shows that reduction of the permeability proceeds at faster speed for smaller value of length exponent(a) and for larger value of Hurst exponent(H). The fracture length distribution has stronger effect on speed of reduction than the aperture spatial distribution. The time needed to reduce permeability is inversely proportional to the hydraulic gradient.

  • PDF

Near-optimum trajectory planning for robot manipulators

  • Yamamoto, Motoji;Marushima, Shinya;Mohri, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.621-626
    • /
    • 1989
  • An efficient algorithm for planning near-optimum trajectory of manipulators is proposed. The algorithm is divided into two stages. The first one is the optimization of time trajectory with given spatial path. And the second one is the optimization of the spatial path itself. To consider the second problem, the manipulator dynamics is represented using the path parameter "s", then a differential equation corresponding to the dynamics is solved as two point boundary value problem. In this procedure, the gradient method is used to calculate improved input torques.t torques.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spatial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triagulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triagular facets : the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally ; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF