• Title/Summary/Keyword: Spatial error model

Search Result 430, Processing Time 0.032 seconds

Estimation of Potential Risk and Numerical Simulations of Landslide Disaster based on UAV Photogrammetry (무인 항공사진측량 정보를 기반으로 한 산사태 수치해석 및 위험도 평가)

  • Choi, Jae Hee;Choi, Bong Jin;Kim, Nam Gyun;Lee, Chang Woo;Seo, Jun Pyo;Jun, Byong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.675-686
    • /
    • 2021
  • This study investigated the ground displacement occurring in a slope below a waste-rock dumping site and estimated the likelihood of a disaster due to a landslide. To start with, photogrammetry was conducted by unmanned aerial vehicles (UAVs) to investigate the size and extent of the ground displacement. From April 2019 to July 2020, the average error rate of the five UAV surveys was 0.011-0.034 m, and an elevation change of 2.97 m occurred due to the movement of the soil layer. Only some areas of the slope showedelevation change, and this was believed to be due to thegroundwater generated during rainfall rather than the effect of the waste-rock load at the top. Sensitivity analysis for LS-RAPID simulation was performed, and the simulation results were compared and analyzed by applying a digital elevation model (DEM) and a digital surface model (DSM)as terrain data with 10 m, 5 m, and 4 m grids. When data with high spatial resolution were used, the extent of the sedimentation of landslide material tended to be excessively expanded in the DEM. In contrast, in the result of applying a DSM, which reflects the topography in detail, the diffusion range was not significantly affected even when the spatial resolution was changed, and the sedimentation behavior according to the river shape could be accurately expressed. As a result, it was concluded that applying a DSM rather than a DEM does not significantly expand the sedimentation range, and results that reflect the site situation well can be obtained.

Application of a Grid-Based Rainfall-Runoff Model Using SRTM DEM (SRTM DEM을 이용한 격자기반 강우-유출모의)

  • Jung, In-Kyun;Park, Jong-Yoon;Park, Min-Ji;Shin, Hyung-Jin;Jeong, Hyeon-Gyo;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.157-169
    • /
    • 2010
  • In this study, the applicability of SRTM(The Shuttle Radar Topography Mission) DEM(Digital Elevation Model) which is one of the remotely sensed shuttle's radar digital elevation was tested for use as the input data in a grid-based rainfall-runoff model. The SRTM DEM and digital topographic map derived DEM(TOPO DEM) were building with 500m spatial resolution for the Chungju-Dam watershed which located in the middle east of South Korea, and stream-burning method was applied to delineate the proper flow direction for model application. Similar topographical characteristics were shown as a result of comparing elevation, flow-direction, hydrological slope, number of watershed cell, and profile between SRTM DEM and TOPO DEM. Two DEMs were tested by using a grid-based rainfall-runoff model named KIMSTORM with 6 storm events. The results also showed no significant differences in average values of relative error for both peak runoff(0.91 %) and total runoff volume(0.29 %). The results showed that the SRTM DEM has applicability like TOPO DEM for use in a grid-based rainfall-runoff modeling.

Very short-term rainfall prediction based on radar image learning using deep neural network (심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측)

  • Yoon, Seongsim;Park, Heeseong;Shin, Hongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1159-1172
    • /
    • 2020
  • This study applied deep convolution neural network based on U-Net and SegNet using long period weather radar data to very short-term rainfall prediction. And the results were compared and evaluated with the translation model. For training and validation of deep neural network, Mt. Gwanak and Mt. Gwangdeoksan radar data were collected from 2010 to 2016 and converted to a gray-scale image file in an HDF5 format with a 1km spatial resolution. The deep neural network model was trained to predict precipitation after 10 minutes by using the four consecutive radar image data, and the recursive method of repeating forecasts was applied to carry out lead time 60 minutes with the pretrained deep neural network model. To evaluate the performance of deep neural network prediction model, 24 rain cases in 2017 were forecast for rainfall up to 60 minutes in advance. As a result of evaluating the predicted performance by calculating the mean absolute error (MAE) and critical success index (CSI) at the threshold of 0.1, 1, and 5 mm/hr, the deep neural network model showed better performance in the case of rainfall threshold of 0.1, 1 mm/hr in terms of MAE, and showed better performance than the translation model for lead time 50 minutes in terms of CSI. In particular, although the deep neural network prediction model performed generally better than the translation model for weak rainfall of 5 mm/hr or less, the deep neural network prediction model had limitations in predicting distinct precipitation characteristics of high intensity as a result of the evaluation of threshold of 5 mm/hr. The longer lead time, the spatial smoothness increase with lead time thereby reducing the accuracy of rainfall prediction The translation model turned out to be superior in predicting the exceedance of higher intensity thresholds (> 5 mm/hr) because it preserves distinct precipitation characteristics, but the rainfall position tends to shift incorrectly. This study are expected to be helpful for the improvement of radar rainfall prediction model using deep neural networks in the future. In addition, the massive weather radar data established in this study will be provided through open repositories for future use in subsequent studies.

Performance of Northern Exposure Index in Reducing Estimation Error for Daily Maximum Temperature over a Rugged Terrain (북향개방지수가 복잡지형의 일 최고기온 추정오차 저감에 미치는 영향)

  • Chung, U-Ran;Lee, Kwang-Hoe;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2007
  • The normalized difference in incident solar energy between a target surface and a level surface (overheating index, OHI) is useful in eliminating estimation error of site-specific maximum temperature in complex terrain. Due to the complexity in its calculation, however, an empirical proxy variable called northern exposure index (NEI) which combines slope and aspect has been used to estimate OHI based on empirical relationships between the two. An experiment with real-world landscape and temperature data was carried out to evaluate performance of the NEI - derived OHI (N-OHI) in reduction of spatial interpolation error for daily maximum temperature compared with that by the original OHI. We collected daily maximum temperature data from 7 sites in a mountainous watershed with a $149 km^2$ area and a 795m elevation range ($651{\sim}1,445m$) in Pyongchang, Kangwon province. Northern exposure index was calculated for the entire 166,050 grid cells constituting the watershed based on a 30-m digital elevation model. Daily OHI was calculated for the same watershed ana regressed to the variation of NEI. The regression equations were used to estimate N-OHI for 15th of each month. Deviations in daily maximum temperature at 7 sites from those measured at the nearby synoptic station were calculated from June 2006 to February 2007 and regressed to the N-OHI. The same procedure was repeated with the original OHI values. The ratio sum of square errors contributable by the N-OHI were 0.46 (winter), 0.24 (fall), and 0.01 (summer), while those by the original OHI were 0.52, 0.37 and 0.15, respectively.

Time Series Analysis of the Relationship between Housing Consumer Sentiment and Regional Housing Prices in Seoul (서울시 주택소비심리와 권역별 주택가격의 시계열적 관계분석)

  • Yang, Hye-Seon;Seo, Won-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.125-141
    • /
    • 2020
  • This study investigated the time-series relationship between housing consumer sentiment and housing prices in the five major districts in Seoul and also analyzed the effect of the housing consumer sentiment on housing prices using Granger Causality and VEC (Vector Error Correction) models. To describe the key results, first of all, housing consumer sentiment and regional housing market prices were closely related to each other, and the consumer sentiment strongly affected the change of housing prices. Second, the housing consumer sentiment was confirmed to have a discriminatory effect on the housing prices among the districts in Seoul in the short term. Specifically, the housing price of the east southern district (ESD) was the main reason for the change in housing consumer sentiment in Seoul, and that the resulting impact was transferred to other districts. Third, it was analyzed that regions other than the ESD would increase the housing prices in the long term as the housing consumer sentiment turned positive, but that the ESD would see a steady tone. Fourth, in the case of relative influence by district, housing (apartment) price fluctuation in a district was generally found to be most affected by adjacent or competitive districts. Through these findings, this study confirmed that there is a clear causality between housing consumer sentiment and housing prices in each district of Seoul and that there is a discriminatory influence on housing consumer sentiment among the districts.

Development of Biomass Evaluation Model of Winter Crop Using RGB Imagery Based on Unmanned Aerial Vehicle (무인기 기반 RGB 영상을 이용한 동계작물 바이오매스 평가 모델 개발)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.709-720
    • /
    • 2018
  • In order to optimize the evaluation of biomass in crop monitoring, accurate and timely data of the crop-field are required. Evaluating above-ground biomass helps to monitor crop vitality and to predict yield. Unmanned Aerial Vehicle (UAV) imagery are being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study reports on the development of remote sensing techniques for evaluating the biomass of winter crop. Specific objective was to develop statistical models for estimating the dry weight of barley and wheat using a Excess Green index ($E{\times}G$) based Vegetation Fraction (VF) and a Crop Surface Model (CSM) based Plant Height (PH) value. As a result, the multiple linear regression equations consisting of three independent variables (VF, PH, and $VF{\times}PH$) and above-ground dry weight provided good fits with coefficients of determination ($R^2$) ranging from 0.86 to 0.99 with 5 cultivars. In the case of the barley, the coefficient of determination was 0.91 and the root mean squared error of measurement was $102.09g/m^2$. And for the wheat, the coefficient of determination was 0.90 and the root mean squared error of measurement was $110.87g/m^2$. Therefore, it will be possible to evaluate the biomass of winter crop through the UAV image for the crop growth monitoring.

Comparative Analysis of the Causal Relationship between Regions of Fluctuations in the Housing Market (주택시장 변동의 지역간 인과성 비교분석)

  • Kim, Kyong-hoon;Jang, Ho-myun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.518-527
    • /
    • 2016
  • The housing market is changing continuously according to the place and time and these changes have a ripple effect across various fields. On the other hand, the amount of housing that is consumed in the region also acts as a central cause of price movement. Moreover, the cause of variations in the housing market can be separated according to the characteristics of the housing consumer. In addition, the individual characteristics of the consumer varies according to the region. As a result, a study on the regional causal relationship of the housing market is underway. Although significant research has been done on the domestic home sales market, there has been limited research on the housing charter market. Therefore, in this paper, regional causal relationship of the housing market in the Gangnam and Gangbuk area in Seoul and Gyeonggi Province was analyzed using the vector error correction model, and is segmented by housing sale market and housing jeonse market. In addition, housing sale and housing jeonse of Gangam, Ganbuk and Gyeonggi province are defined as analysis variables, and time series data is the monthly material of June 2003 to November 2015. The results of the analysis, in the case of the housing sale market, showed that fluctuations in house prices in Gangnam area have a major influence on the fluctuations in house prices in the surrounding region. Similarly, in the case of the housing jeonse market, it was found that the jeonse price of Gangnam area has a significant impact on the jeonse price of housing in the surrounding area.

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.

Enhancing Project Integration and Interoperability of GIS and BIM Based on IFC (IFC 기반 GIS와 BIM 프로젝트 통합관리 및 상호 운용성 강화)

  • Kim, Tae-Hee;Kim, Tae-Hyun;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.89-102
    • /
    • 2024
  • The recent advancements in Smart City and Digital Twin technologies have highlighted the critical role of integrating GIS and BIM in urban planning and construction projects. This integration ensures the consistency and accuracy of information, facilitating smooth information exchange. However, achieving interoperability requires standardization and effective project integration management strategies. This study proposes interoperability solutions for the integration of GIS and BIM for managing various projects. The research involves an in-depth analysis of the IFC schema and data structures based on the latest IFC4 version and proposes methods to ensure the consistency of reference point coordinates and coordinate systems. The study was conducted by setting the EPSG:5186 coordinate system, used by the National Geographic Information Institute's digital topographic map, and applying virtual shift origin coordinates. Through BIMvision, the results of the shape and error check coordinates' movement in the BIM model were reviewed, confirming that the error check coordinates moved consistently with the reference point coordinates. Additionally, it was verified that even when the coordinate system was changed to EPSG:5179 used by Naver Map and road name addresses, or EPSG:5181 used by Kakao Map, the BIM model's shape and coordinates remained consistently unchanged. Notably, by inputting the EPSG code information into the IFC file, the potential for coordinate system interoperability between projects was confirmed. Therefore, this study presents an integrated and systematic management approach for information sharing, automation processes, enhanced collaboration, and sustainable development of GIS and BIM. This is expected to improve compatibility across various software platforms, enhancing information consistency and efficiency across multiple projects.

Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities

  • Kim, Sun-Young;Yi, Seon-Ju;Eum, Young Seob;Choi, Hae-Jin;Shin, Hyesop;Ryou, Hyoung Gon;Kim, Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.12.1-12.8
    • /
    • 2014
  • Objectives Cohort studies of associations between air pollution and health have used exposure prediction approaches to estimate individual-level concentrations. A common prediction method used in Korean cohort studies is ordinary kriging. In this study, performance of ordinary kriging models for long-term particulate matter less than or equal to $10{\mu}m$ in diameter ($PM_{10}$) concentrations in seven major Korean cities was investigated with a focus on spatial prediction ability. Methods We obtained hourly $PM_{10}$ data for 2010 at 226 urban-ambient monitoring sites in South Korea and computed annual average $PM_{10}$ concentrations at each site. Given the annual averages, we developed ordinary kriging prediction models for each of the seven major cities and for the entire country by using an exponential covariance reference model and a maximum likelihood estimation method. For model evaluation, cross-validation was performed and mean square error and R-squared ($R^2$) statistics were computed. Results Mean annual average $PM_{10}$ concentrations in the seven major cities ranged between 45.5 and $66.0{\mu}g/m^3$ (standard deviation=2.40 and $9.51{\mu}g/m^3$, respectively). Cross-validated $R^2$ values in Seoul and Busan were 0.31 and 0.23, respectively, whereas the other five cities had $R^2$ values of zero. The national model produced a higher cross-validated $R^2$ (0.36) than those for the city-specific models. Conclusions In general, the ordinary kriging models performed poorly for the seven major cities and the entire country of South Korea, but the model performance was better in the national model. To improve model performance, future studies should examine different prediction approaches that incorporate $PM_{10}$ source characteristics.