• 제목/요약/키워드: Spatial downscaling method

검색결과 36건 처리시간 0.021초

Some issues on the downscaling of global climate simulations to regional scales

  • Jang, Suhyung;Hwang, Manha;Hur, Youngteck;Kavvas, M. Levent
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.229-229
    • /
    • 2015
  • Downscaling is a fundamental procedure in the assessment of the future climate change impact at regional and watershed scales. Hence, it is important to investigate the spatial variability of the climate conditions that are constructed by various downscaling methods in order to assess whether each method can model the climate conditions at various spatial scales properly. This study introduces a fundamental research from Jang and Kavvas(2015) that precipitation variability from a popular statistical downscaling method (BCSD) and a dynamical downscaling method (MM5) that is based on the NCAR/NCEP reanalysis data for a historical period and on the CCSM3 GCM A1B emission scenario simulations for a projection period, is investigated by means of some spatial characteristics: a) the normalized standard deviation (NSD), and b) the precipitation change over Northern California region. From the results of this study it is found that the BCSD method has limitations in projecting future precipitation values since the BCSD-projected precipitation, being based on the interpolated change factors from GCM projected precipitation, does not consider the interactions between GCM outputs and local geomorphological characteristics such as orographic effects and land use/cover patterns. As such, it is not clear whether the popular BCSD method is suitable for the assessment of the impact of future climate change at regional, watershed and local scales as the future climate will evolve in time and space as a nonlinear system with land-atmosphere feedbacks. However, it is noted that in this study only the BCSD procedure for the statistical downscaling method has been investigated, and the results by other statistical downscaling methods might be different.

  • PDF

Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds

  • Jang, S.;Hwang, M.;Hur, Y. T.;Yi, J.
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.738-739
    • /
    • 2015
  • The main objective of this study, "Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds", is to carry out over Han River and Imjin River watersheds. To this end, a statistical regression method with MOS (Model Output Statistics) corrections at every downscaling step was developed and applied for downscaling the spatially-coarse Global Climate Model Projections (GCMPs) from CCSM3 and CSIRO with respect to precipitation into 0.1 degree (about 11 km) spatial grid over study regions. The spatially archived hydro-climate data sets such as Willmott, GsMap and APHRODITE datasets were used for MOS corrections by means of monthly climatology between observations and downscaled values. Precipitation values downscaled in this study were validated against ground observations and then future climate simulation results on precipitation were evaluated for the projections.

  • PDF

Ensemble Downscaling of Soil Moisture Data Using BMA and ATPRK

  • Youn, Youjeong;Kim, Kwangjin;Chung, Chu-Yong;Park, No-Wook;Lee, Yangwon
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.587-607
    • /
    • 2020
  • Soil moisture is essential information for meteorological and hydrological analyses. To date, many efforts have been made to achieve the two goals for soil moisture data, i.e., the improvement of accuracy and resolution, which is very challenging. We presented an ensemble downscaling method for quality improvement of gridded soil moisture data in terms of the accuracy and the spatial resolution by the integration of BMA (Bayesian model averaging) and ATPRK (area-to-point regression kriging). In the experiments, the BMA ensemble showed a 22% better accuracy than the data sets from ESA CCI (European Space Agency-Climate Change Initiative), ERA5 (ECMWF Reanalysis 5), and GLDAS (Global Land Data Assimilation System) in terms of RMSE (root mean square error). Also, the ATPRK downscaling could enhance the spatial resolution from 0.25° to 0.05° while preserving the improved accuracy and the spatial pattern of the BMA ensemble, without under- or over-estimation. The quality-improved data sets can contribute to a variety of local and regional applications related to soil moisture, such as agriculture, forest, hydrology, and meteorology. Because the ensemble downscaling method can be applied to the other land surface variables such as temperature, humidity, precipitation, and evapotranspiration, it can be a viable option to complement the accuracy and the spatial resolution of satellite images and numerical models.

고해상도 수치예측자료 생산을 위한 경도-역거리 제곱법(GIDS) 기반의 공간 규모 상세화 기법 활용 (Implementation of Spatial Downscaling Method Based on Gradient and Inverse Distance Squared (GIDS) for High-Resolution Numerical Weather Prediction Data)

  • 양아련;오수빈;김주완;이승우;김춘지;박수현
    • 대기
    • /
    • 제31권2호
    • /
    • pp.185-198
    • /
    • 2021
  • In this study, we examined a spatial downscaling method based on Gradient and Inverse Distance Squared (GIDS) weighting to produce high-resolution grid data from a numerical weather prediction model over Korean Peninsula with complex terrain. The GIDS is a simple and effective geostatistical downscaling method using horizontal distance gradients and an elevation. The predicted meteorological variables (e.g., temperature and 3-hr accumulated rainfall amount) from the Limited-area ENsemble prediction System (LENS; horizontal grid spacing of 3 km) are used for the GIDS to produce a higher horizontal resolution (1.5 km) data set. The obtained results were compared to those from the bilinear interpolation. The GIDS effectively produced high-resolution gridded data for temperature with the continuous spatial distribution and high dependence on topography. The results showed a better agreement with the observation by increasing a searching radius from 10 to 30 km. However, the GIDS showed relatively lower performance for the precipitation variable. Although the GIDS has a significant efficiency in producing a higher resolution gridded temperature data, it requires further study to be applied for rainfall events.

한반도 미래 기온 변화 예측을 위한 ECHO-G/S 시나리오의 통계적 상세화에 관한 연구 (A Study on Statistical Downscaling for Projection of Future Temperature Change simulated by ECHO-G/S over the Korean Peninsula)

  • 신진호;이효신;권원태;김민지
    • 대기
    • /
    • 제19권2호
    • /
    • pp.107-125
    • /
    • 2009
  • Statistical downscaled surface temperature datasets by employing the cyclostationary empirical orthogonal function (CSEOF) analysis and multiple linear regression method are examined. For evaluating the efficiency of this statistical downscaling method, monthly surface temperature of the ECMWF has been downscaled into monthly temperature having a fine spatial scale of ~20km over the Korean peninsula for the 1973-2000 period. Monthly surface temperature of the ECHOG has also been downscaled into the same spatial scale data for the same period. Comparisons of temperatures between two datasets over the Korean peninsula show that annual mean temperature of the ECMWF is about $2^{\circ}C$ higher than that of the ECHOG. After applying to the statistical downscaling method, the difference of two annual mean temperatures reduces less than $1^{\circ}C$ and their spatial patterns become even close to each other. Future downscaled data shows that annual temperatures in the A1B scenario will increase by $3.5^{\circ}C$ by the late 21st century. The downscaled data are influenced by the ECHOG as well as observation data which includes effects of complicated topography and the heat island.

Machine Learning of GCM Atmospheric Variables for Spatial Downscaling of Precipitation Data

  • Sunmin Kim;Masaharu Shibata;YasutoTachikawa
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.26-26
    • /
    • 2023
  • General circulation models (GCMs) are widely used in hydrological prediction, however their coarse grids make them unsuitable for regional analysis, therefore a downscaling method is required to utilize them in hydrological assessment. As one of the downscaling methods, convolutional neural network (CNN)-based downscaling has been proposed in recent years. The aim of this study is to generate the process of dynamic downscaling using CNNs by applying GCM output as input and RCM output as label data output. Prediction accuracy is compared between different input datasets, and model structures. Several input datasets with key atmospheric variables such as precipitation, temperature, and humidity were tested with two different formats; one is two-dimensional data and the other one is three-dimensional data. And in the model structure, the hyperparameters were tested to check the effect on model accuracy. The results of the experiments on the input dataset showed that the accuracy was higher for the input dataset without precipitation than with precipitation. The results of the experiments on the model structure showed that substantially increasing the number of convolutions resulted in higher accuracy, however increasing the size of the receptive field did not necessarily lead to higher accuracy. Though further investigation is required for the application, this paper can contribute to the development of efficient downscaling method with CNNs.

  • PDF

Spatial Downscaling of AMSR2 Soil Moisture Content using Soil Texture and Field Measurements

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.571-581
    • /
    • 2015
  • Soil moisture content is generally accepted as an important factor to understand the process of crop growth and is the basis of earth system models for analysis and prediction of the crop condition. To continuously monitor soil moisture changes at kilometer scale, it is demanded to create high resolution data from the current, several tens of kilometers. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) from 10 km to 30 m resolution using a soil texture and field measurements that have a high correlation with the SMC. As a result, the soil moisture variations of both data (before and after downscaling) were identical, and the Root Mean Square Error (RMSE) of SMC exhibited the low values. Also, time series analyses showed that three kinds of SMC data (field measurement, original AMSR2, and downscaled AMSR2) had very similar temporal variations. Our method can be applied to downscaling of other soil variables and can contribute to monitoring small-scale changes of soil moisture by providing high resolution data.

SVM 회귀 모형을 활용한 격자 강우량 상세화 기법 (Spatial Downscaling of Grid Precipitation Using Support Vector Machine Regression)

  • 문희원;백종진;황석환;최민하
    • 한국수자원학회논문집
    • /
    • 제47권11호
    • /
    • pp.1095-1105
    • /
    • 2014
  • 본 연구에서는 Tropical Rainfall Measuring Mission (TRMM) 3B43 V7 (25 km)의 월 누적 격자 강우량을 1 km 해상도로 상세화하기 위해 Support Vector Machine (SVM) 회귀를 활용한 상세화 기법을 제안하였다. 비선형 예측모델인 SVM은 상세화의 기반이 되는 다양한 수문기상인자와 강우 발생간의 월별 상관성 구축에 효율적으로 활용되었다. 상세화된 격자 강우는 전국에 고루 분포한 64개 지점 관측 강우와의 비교 분석을 통해 상세화 이전의 격자 강우 보다 다소 개선된 정확도를 지니는 것으로 확인되었다. 특히, 상세화 이전 격자 강우가 지니는 양의 Bias가 효과적으로 개선되었다. 상세화 전후의 공간분포 비교에서 두 분포는 평균적으로 유사했으나, 상세화 이전 강우의 공간분포에서 나타나지 않았던 강우의 국지적 특성이 상세화된 공간분포를 통해 잘 표현되는 것을 확인할 수 있었다. 특히, 일부 지점의 과소 및 과대산정이 상세화를 통해 개선되어 전반적인 정확도 향상에 기여하였음을 확인했다. 본 연구에서 제안된 상세화 기법이 적용된 격자 강우는 모델의 정확도 향상을 위한 고해상도 입력자료로 활용될 수 있으며, 추후 연구에서는 SVM 외에 다른 회귀 방식을 활용하여 최적의 강우 상세화 기법 개발에 기여할 수 있을 것으로 보인다.

GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가 (Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique)

  • 김철겸;박지훈;조재필
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

남한지역 일단위 강우량 공간상세화를 위한 BCSA 기법 적용성 검토 (Application of Bias-Correction and Stochastic Analogue Method (BCSA) to Statistically Downscale Daily Precipitation over South Korea)

  • 황세운;정임국;김시호;조재필
    • 한국농공학회논문집
    • /
    • 제63권6호
    • /
    • pp.49-60
    • /
    • 2021
  • BCSA (Bias-Correction and Stochastic Analog) is a statistical downscaling technique designed to effectively correct the systematic errors of GCM (General Circulation Model) output and reproduce basic statistics and spatial variability of the observed precipitation filed. In this study, the applicability of BCSA was evaluated using the ASOS observation data over South Korea, which belongs to the monsoon climatic zone with large spatial variability of rainfall and different rainfall characteristics. The results presented the reproducibility of temporal and spatial variability of daily precipitation in various manners. As a result of comparing the spatial correlation with the observation data, it was found that the reproducibility of various climate indices including the average spatial correlation (variability) of rainfall events in South Korea was superior to the raw GCM output. In addition, the needs of future related studies to improve BCSA, such as supplementing algorithms to reduce calculation time, enhancing reproducibility of temporal rainfall patterns, and evaluating applicability to other meteorological factors, were pointed out. The results of this study can be used as the logical background for applying BCSA for reproducing spatial details of the rainfall characteristic over the Korean Peninsula.