• Title/Summary/Keyword: Spatial System

Search Result 7,500, Processing Time 0.04 seconds

Analysis of Behavior of Seoullo 7017 Visitors - With a Focus on Text Mining and Social Network Analysis - (서울로 7017 방문자들의 이용행태 분석 -텍스트 마이닝과 소셜 네트워크 분석을 중심으로-)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.6
    • /
    • pp.16-24
    • /
    • 2020
  • The purpose of this study is to analyze the usage behavior of Seoullo 7017, the first public garden in Korea, to understand the usage status by analyzing blogs, and to present usage behavior and improvement plans for Seoullo 7017. From June 2017 to May 2020, after Seoullo 7017 was open to citizens, character data containing 'Seoullo 7017' in the title and contents of NAVER and·DAUM blogs were converted to text mining and socialization, a Big Data technique. The analysis was conducted using social network analysis. The summary of the research results is as follows. First of all, the ratio of men and women searching for Seoullo 7017 online is similar, and the regions that searched most are in the order of Seoul and Gyeonggi, and those in their 40s and 50s were the most interested. In other words, it can be seen that there is a lack of interest in regions other than Seoul and Gyeonggi and among those in their 10s, 20s, and 30s. The main behaviors of Seoullo 7017 are' night view' and 'walking', and the factors that affect culture and art are elements related to culture and art. If various programs and festivals are opened and actively promoted, the main behavior will be more varied. On the other hand, the main behavior that the users of Seoullo 7017 want is 'sit', which is a static behavior, but the physical conditions are not sufficient for the behavior to occur. Therefore, facilities that can cause sitting behavior, such as shades and benches must be improved to meet the needs of visitors. The peculiarity of the change in the behavior of Seoullo 7017 is that it is recognized as a good place to travel alone and a good place to walk alone as a public multi-use facility and group activities are restricted due to COVID-19. Accordingly, in a situation like the COVD-19 pandemic, more diverse behaviors can be derived in facilities where people can take a walk, etc., and the increase of various attractions and the satisfaction of users can be increased. Seoullo 7017, as Korea's first public pedestrian area, was created for urban regeneration and the efficient use of urban resources in areas beyond the meaning of public spaces and is a place with various values such as history, nature, welfare, culture, and tourism. However, as a result of the use behavior analysis, various behaviors did not occur in Seoullo 7017 as expected, and elements that hinder those major behaviors were derived. Based on these research results, it is necessary to understand the usage behavior of Seoullo 7017 and to establish a plan for spatial system and facility improvement, so that Seoullo 7017 can be an important place for urban residents and a driving force to revitalize the city.

An Analysis of Environmental Factors of Abandoned Paddy Wetlands as References and Changes in Land Cover Types in the Influence Area (묵논습지 환경요인 및 생태영향권 내 토지피복유형 변화 분석)

  • Park, MiOk;Kwon, SoonHyo;Back, SeungJun;Seo, JooYoung;Koo, BonHak
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.331-344
    • /
    • 2022
  • This study analyzed the characteristics of the soil and hydrological environment of abandoned paddy wetlands examined the changes in land cover type in the ecological affect area, analyzed the environmental factors of abandoned paddy wetlands, and examined the changes in land cover type in the ecological impact area. The ecological environment characteristics of the reference abandoned paddy wetlands were investigated through literature research, environmental spatial information service, and preliminary exploration of the abandoned paddy wetlands, and the basic data for the restoration of abandoned paddy wetlands ware provided by examining the changes in land cover type in the ecological impact area for 40 years. Through this study, it will be possible to manage the rapidly increasing number of abandoned farmland to be converted into wetlands so that it can perform functions equivalent to or greater than that of natural wetlands. In particular, as we checked the clues that abandoned paddy wetlands could spread to surrounding ecological influences through land cover changes, the study sites are highly likely to be reference wetlands, and if the topography, soil, water circulation system, and carbon reduction performance are analyzed carefully, it will be possible to standardize the development process. In addition, through the change in land cover, clues were confirmed that the abandoned paddy wetlands could spread to the surrounding ecological affect areas. The land cover type in the ecological impact area, forests was mainly distributed, but generally decreased rapidly in the last 10-20 years, and forests were changing from coniferous forests to broad-leaved forests, mixed forests, or grassland. It has not yet been fully called to the wetland, and it is found that it has maintained the form of barren or grassland, and as can be seen in the case of natural wetlands after more than 30 years after abandoned, it is expected that the transition will gradually proceed to wetlands that are structurally and functionally similar to natural wetlands.

A Study on Spatial Changes around Jangseogak(Former Yi Royal-Family Museum) in Changgyeonggung during the Japanese colonial period (일제강점기 창경궁 장서각(구 이왕가박물관) 주변의 공간 변화에 관한 연구)

  • Yee, Sun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.10-23
    • /
    • 2021
  • During the Japanese colonial period, the palaces of Joseon were damaged in many parts. Changgyeonggung Palace is the most demolished palace with the establishment of a zoo, botanical garden, and museum. During the Japanese colonial period, the palaces of Joseon were damaged in many parts. This study examined the construction process of Jangseogak(Yi Royal-Family Museum), located right next to the Jagyeongjeon site, which was considered the most important space in the Changgyeonggung residential area of royal family zone, through historical materials and field research. Built in 1911, Jangseogak is located at a location overlooking the entire Changgyeonggung Palace and overlooking the Gyeongseong Shrine of Namsan in the distance. Changes in the surrounding space during the construction of Jangseogak can be summarized as follows. First, in the early 1910s, the topography of the garden behind Jagyeongjeon and part of the Janggo were damaged to create the site of Jangseogak. The front yard was built in the front of Jangseogak, and a stone pillar was installed, and a staircase was installed to the south. In the process, the original stone system at the rear of Yanghwadang was destroyed, and it is presumed that Jeong Iljae and other buildings were demolished. Second, in the 1920s, many pavilions were demolished and the zoo and botanical gardens and museums were completed through leveling. After the Jangseogak was completed, the circulation of the Naejeon and surrounding areas was also changed. Cherry trees and peonies were planted in the flower garden around the front yard of Jangseogak and the stairs, and a Japanese-style garden was created between Yanghwadang and Jibbokheon. Third, in the 1930s, the circulation around Jangseogak was completed in its present form, and the museum, Jangseogak, Zoological and Botanical Gardens, and Changgyeonggung, which became a cherry tree garden, were transformed into a Japanese-style cultural park. After that, the surrounding space did not change much until it was demolished. The restoration of the present palace is a long-term, national project of the Cultural Heritage Administration. The results of this study will provide important data for the restoration plan of Changgyeonggung Palace in the future, and it is expected that it will provide additional information to related researchers in the future.

Retrieval of Vegetation Health Index for the Korean Peninsula Using GK2A AMI (GK2A AMI를 이용한 한반도 식생건강지수 산출)

  • Lee, Soo-Jin;Cho, Jaeil;Ryu, Jae-Hyun;Kim, Nari;Kim, Kwangjin;Sohn, Eunha;Park, Ki-Hong;Jang, Jae-Cheol;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • Global warming causes climate change and increases extreme weather events worldwide, and the occurrence of heatwaves and droughts is also increasing in Korea. For the monitoring of extreme weather, various satellite data such as LST (Land Surface Temperature), TCI (Temperature Condition Index), NDVI (Normalized Difference Vegetation Index), VCI (Vegetation Condition Index), and VHI (Vegetation Health Index) have been used. VHI, the combination of TCI and VCI, represents the vegetation stress affected by meteorological factors like precipitation and temperature and is frequently used to assess droughts under climate change. TCI and VCI require historical reference values for the LST and NDVI for each date and location. So, it is complicated to produce the VHI from the recent satellite GK2A (Geostationary Korea Multi-Purpose Satellite-2A). This study examined the retrieval of VHI using GK2A AMI (Advanced Meteorological Imager) by referencing the historical data from VIIRS (Visible Infrared Imaging Radiometer Suite) NDVI and LST as a proxy data. We found a close relationship between GK2A and VIIRS data needed for the retrieval of VHI. We produced the TCI, VCI, and VHI for GK2A during 2020-2021 at intervals of 8 days and carried out the interpretations of recent extreme weather events in Korea. GK2A VHI could express the changes in vegetation stress in 2020 due to various extreme weather events such as heatwaves (in March and June) and low temperatures (in April and July), and heavy rainfall (in August), while NOAA (National Oceanic and Atmospheric Administration) VHI could not well represent such characteristics. The GK2A VHI presented in this study can be utilized to monitor the vegetation stress due to heatwaves and droughts if the historical reference values of LST and NDVI can be adjusted in a more statistically significant way in the future work.

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.

Analysis of Spatial Changes in the Forest Landscape of the Upper Reaches of Guem River Dam Basin according to Land Cover Change (토지피복변화에 따른 금강 상류 댐 유역 산림 경관의 구조적 변화 분석)

  • Kyeong-Tae Kim;Hyun-Jung Lee;Whee-Moon Kim;Won-Kyong Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Forests within watersheds are essential in maintaining ecosystems and are the central infrastructure for constructing an ecological network system. However, due to indiscriminate development projects carried out over past decades, forest fragmentation and land use changes have accelerated, and their original functions have been lost. Since a forest's structural pattern directly impacts ecological processes and functions in understanding forest ecosystems, identifying and analyzing change patterns is essential. Therefore, this study analyzed structural changes in the forest landscape according to the time-series land cover changes using the FRAGSTATS model for the dam watershed of the Geum River upstream. Land cover changes in the dam watershed of the Geum River upstream through land cover change detection showed an increase of 33.12 square kilometers (0.62%) of forests and 67.26 square kilometers (1.26%) of urbanized dry areas and a decrease of 148.25 square kilometers (2.79%) in agricultural areas from the 1980s to the 2010s. The results of no-sampling forest landscape analysis within the watershed indicated landscape percentage (PLAND), area-weighted proximity index (CONTIG_AM), average central area (CORE_MN), and adjacency index (PLADJ) increased, and the number of patches (NP), landscape shape index (LSI), and cohesion index (COHESION) decreased. Identification of structural change patterns through a moving window analysis showed the forest landscape in Sangju City, Gyeongsangbuk Province, Boeun County in Chungcheongbuk Province, and Jinan Province in Jeollabuk Province was relatively well preserved, but fragmentation was ongoing at the border between Okcheon County in Chungcheongbuk Province, Yeongdong and Geumsan Counties in Chungcheongnam Province, and the forest landscape in areas adjacent to Muju and Jangsu Counties in Jeollabuk Province. The results indicate that it is necessary to establish afforestation projects for fragmented areas when preparing a future regional forest management strategy. This study derived areas where fragmentation of forest landscapes is expected and the results may be used as basic data for assessing the health of watershed forests and establishing management plans.

A Study on the Wind Ventilation Forest Planning Techniques for Improving the Urban Environment - A Case Study of Daejeon Metropolitan City - (도시환경 개선을 위한 바람길숲 조성 계획기법 개발 연구 - 대전광역시를 사례로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Park, Soo-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.28-41
    • /
    • 2023
  • The objective of the study was to develop an Urban Windway Forest Creation Planning Technique for the Improvement of the Urban Environment using the case of Daejeon Metropolitan City. Through a spatial analysis of fine dust and heat waves, a basin zone, in which the concentration was relatively serious, was derived, and an area with the potential of cold air flow was selected as the target area for the windway forest development by analyzing the climate and winds in the relevant zone. Extreme fine dust areas included the areas of the Daejeon Industrial Complex Regeneration Business District in Daedeok-gu and Daedeok Techno Valley in Yuseong-gu. Heat wave areas included the areas of Daedeok industrial Complex in Moksang-dong, the Daejeon Industrial Complex Regeneration Business District in Daehwa-dong, and the high-density residential area in Ojeong-dong. As a result of measuring the wind speeds in Daejeon with an Automatic Weather System, the average wind speeds during the day and night were 0.1 to 1.7 m/s,, respectively. So, a plan of for a windway forest that smoothly induces the movement of cold air formed in outer forests at night is required. The fine dust/heat wave intensive management zones of Daejeon Metropolitan City were Daejeoncheon, Yudeungcheon, Gapcheon-Yudeungcheon, and Gapcheon. The windway forest formation plan case involved the old city center of Daejeon Metropolitan City among the four zones, the Gapcheon-Yudeungcheon area, in which the windway formation effect was presumed to be high. The Gapcheon-Yudeungcheon area is a downtown area that benefits from the cold and fresh air generated on Mt. Gyejok and Mt. Wuseong, which are outer forests. Accordingly, the windway forest was planned to spread the cold air to the city center by connecting the cold air generated in the Seosa-myeon forest of Mt. Gyejok and the Namsa-myeon forest of Mt. Wuseong through Gapcheon, Yudeungcheon, and street forests. After selecting the target area for the wind ventilation forest, a climate map and wind formation function evaluation map were prepared for the area, the status of variation wind profiles (night), the status of fine dust generation, and the surface temperature distribution status were grasped in detail. The wind ventilation forest planning concept and detailed target sites by type were identified through this. In addition, a detailed action plan was established according to the direction of creation and setting of the direction of creation for each type of wind ventilation forest.

Misconception on the Yellow Sea Warm Current in Secondary-School Textbooks and Development of Teaching Materials for Ocean Current Data Visualization (중등학교 교과서 황해난류 오개념 분석 및 해류 데이터 시각화 수업자료 개발)

  • Su-Ran Kim;Kyung-Ae Park;Do-Seong Byun;Kwang-Young Jeong;Byoung-Ju Choi
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.13-35
    • /
    • 2023
  • Ocean currents play the most important role in causing and controlling global climate change. The water depth of the Yellow Sea is very shallow compared to the East Sea, and the circulation and currents of seawater are quite complicated owing to the influence of various wind fields, ocean currents, and river discharge with low-salinity seawater. The Yellow Sea Warm Current (YSWC) is one of the most representative currents of the Yellow Sea in winter and is closely related to the weather of the southwest coast of the Korean Peninsula, so it needs to be treated as important in secondary-school textbooks. Based on the 2015 revised national educational curriculum, secondary-school science and earth science textbooks were analyzed for content related to the YSWC. In addition, a questionnaire survey of secondary-school science teachers was conducted to investigate their perceptions of the temporal variability of ocean currents. Most teachers appeared to have the incorrect knowledge that the YSWC moves north all year round to the west coast of the Korean Peninsula and is strong in the summer like a general warm current. The YSWC does not have strong seasonal variability in current strength, unlike the North Korean Cold Current (NKCC), but does not exist all year round and appears only in winter. These errors in teachers' subject knowledge had a background similar to why they had a misconception that the NKCC was strong in winter. Therefore, errors in textbook contents on the YSWC were analyzed and presented. In addition, to develop students' and teachers' data literacy, class materials on the YSWC that can be used in inquiry activities were developed. A graphical user interface (GUI) program that can visualize the sea surface temperature of the Yellow Sea was introduced, and a program displaying the spatial distribution of water temperature and salinity was developed using World Ocean Atlas (WOA) 2018 oceanic in-situ measurements of water temperature and salinity data and ocean numerical model reanalysis field data. This data visualization materials using oceanic data is expected to improve teachers' misunderstandings and serve as an opportunity to cultivate both students and teachers' ocean and data literacy.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.