• Title/Summary/Keyword: Spatial System

Search Result 7,500, Processing Time 0.034 seconds

A Strategy to Improve Customer Service for Apartment Building Units (GIS를 기반으로한 실시간 실내공간관리 시스템 개발 - COEX Test Bed -)

  • Na, Kido;Lee, Gwang-Gook;Kim, Whoi-Yul;Kim, Jea-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.269-272
    • /
    • 2009
  • The environment of Ubiquitous in terms of improvement is being expanded to various fields and time enabled system. Thus, a real-time spatial information management system has been developed by integrating a human movement detection system into a SICS(Spatial Information Control System) engine that can integrally manage inside spatial information extracted from 3D CAD and outside spatial information of GIS. The add-on program was developed to extract spatial information necessary for the SICS engine from 3D CAD information, and a human movement detection system was developed. Test bed was operated for 2weeks and indoor human flow information was found out by zone. Also, the direction of future research was decided through a test bed.

  • PDF

A Technology for Integration of Spatial Information Services using Web Registry Services

  • Kim, Mi-Jeong;Lee, Eun-Kyu;Oh, Byoung-Woo;Jang, Byung-Tae
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.621-624
    • /
    • 2003
  • Recently, there has been rising concerns to integrate and connect a developed spatial information services without consideration of location in the heterogeneous distributed environment. The Open GIS Consortium provides system architecture model related to open web service for spatial information. This paper discusses the issues related to the web service framework for spatial information services using standards of Open GIS Consortium. In particular, we concentrate upon the WRS that support the runtime discovery and evaluation of resources. The technology for integration of spatial information services is expected to get synergy effect and overcomes limit of individual development of each spatial information technology. Also this system provides the interoperability and the reusability and prevents the duplication development of system.

  • PDF

Development of a Spatial DSMS for Efficient Real-Time Processing of Spatial Sensor Data (공간 센서 데이타의 효율적인 실시간 처리를 위한공간 DSMS의 개발)

  • Kang, Hong-Koo;Park, Chi-Min;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.45-57
    • /
    • 2007
  • Recently, the development of sensor devices has accelerated researches on advanced technologies like Wireless Sensor Networks. Moreover, spatial sensors using GPS lead to the era of the Ubiquitous Computing Environment which generally uses spatial information and non-spatial information together. In this new era, a real-time processing system for spatial sensor data is essential. In this reason, new data processing systems called DSMS(Data Stream Management System) are being developed by many researchers. However, since most of them do not support geometry types and spatial functions to process spatial sensor data, they are not suitable for the Ubiquitous Computing Environment. For these reasons, in this paper, we designed and implemented a spatial DSMS by extending STREAM which stands for STanford stREam datA Manager, to solve these problems. We added geometry types and spatial functions to STREAM in order to process spatial sensor data efficiently. In addition, we implemented a Spatial Object Manager to manage shared spatial objects within the system. Especially, we implemented the Simple Features Specification for SQL of OGC for interoperability and applied algorithms in GEOS to our system.

  • PDF

Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method)

  • Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Kang, Jonggu;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.777-788
    • /
    • 2021
  • Since aerosol has a relatively short duration and significant spatial variation, satellite observations become more important for the spatially and temporally continuous quantification of aerosol. However, optical remote sensing has the disadvantage that it cannot detect AOD (Aerosol Optical Depth) for the regions covered by clouds or the regions with extremely high concentrations. Such missing values can increase the data uncertainty in the analyses of the Earth's environment. This paper presents a spatial gap-filling framework using a univariate statistical method such as DCT-PLS (Discrete Cosine Transform-based Penalized Least Square Regression) and FMM (Fast Matching Method) inpainting. We conducted a feasibility test for the hourly AOD product from AHI (Advanced Himawari Imager) between January 1 and December 31, 2019, and compared the accuracy statistics of the two spatial gap-filling methods. When the null-pixel area is not very large (null-pixel ratio < 0.6), the validation statistics of DCT-PLS and FMM techniques showed high accuracy of CC=0.988 (MAE=0.020) and CC=0.980 (MAE=0.028), respectively. Together with the AI-based gap-filling method using extra explanatory variables, the DCT-PLS and FMM techniques can be tested for the low-resolution images from the AMI (Advanced Meteorological Imager) of GK2A (Geostationary Korea Multi-purpose Satellite 2A), GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI2 (Geostationary Ocean Color Imager) of GK2B (Geostationary Korea Multi-purpose Satellite 2B) and the high-resolution images from the CAS500 (Compact Advanced Satellite) series soon.

Design and Implementation of a Geospatial Data Visualization System Considering Validation and Independency of GML Documents (GML 문서의 유효성 및 독립성을 고려한 지리공간 데이터 가시화 시스템 설계 및 구현)

  • Jeong, Dong-Won;Kim, Jang-Won;Ahn, Si-Hoon;Jeong, Young-Sik
    • Journal of Information Technology Services
    • /
    • v.7 no.1
    • /
    • pp.205-218
    • /
    • 2008
  • This paper proposes a geospatial data visualization system supporting validation of GML documents. GIS systems manage and use both of spatial and non-spatial data. Currently, most GIS systems represent spatial data in GML (Geography Markup Language) developed by OGC. GML is a language for representation and sharing of spatial information, and until now many systems have been developed in GML. GML does not support expression of non-spatial data, i.e., relational information of spatial objects, and thus most systems extend GML to describe non-spatial information. However, it causes an issue that the systems only accepting standard GML documents cannot process the extended documents. In this paper, we propose a new GIS data visualization system to resolve the aforementioned Issue. Our proposed system allows the representation of both types of data supporting independency of spatial data and non-spatial data. It enhances interoperability with other relevant systems. Therefore, we can develop a rich and high Quality geospatial information services.

Spatial Big Data Query Processing System Supporting SQL-based Query Language in Hadoop (Hadoop에서 SQL 기반 질의언어를 지원하는 공간 빅데이터 질의처리 시스템)

  • Joo, In-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper we present a spatial big data query processing system that can store spatial data in Hadoop and query the data with SQL-based query language. The system stores large-scale spatial data in HDFS-based storage system, and supports spatial queries expressed in SQL-based query language extended for spatial data processing. It supports standard spatial data types and functions defined in OGC simple feature model in the query language. This paper presents the development of core functions of the system including query language parsing, query validation, query planning, and connection with storage system. We compares the performance of the suggested system with an existing system, and our experiments show that the system shows about 58% performance improvement of query execution time over the existing system when executing region query for spatial data stored in Hadoop.

A Study on the Changes of Dental Health System's Expertise and Spatial Composition according to Dental Specialist System Enforcement in Korea (한국 치과 전문의 제도 시행에 따른 치과 의료체계의 전문성과 공간구성의 변화에 관한 연구)

  • Jeong, Tae-Jong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.33-40
    • /
    • 2020
  • The purpose of this research is to provide the basic information for the development of dental healthcare system's expertise and spatial composition in diverse dental spaces in Korea according to dental specialist system enforcement. Literature review of dental expertise especially dental specialist system and investigation on current status of spatial composition of dental spaces have been conducted. After the review, the spatial composition with field survey and architectural drawings of selected dental spaces have been analyzed. The result of this study is arranged with three points. First of all, the main clinical dental spaces are the dental school's dental hospital, dental department in medical center/hospital and private dental clinic in Korea. The second one is that dental school's dental hospital had differentiated to 10-11 departments in 1970-1980's and dental department in medical center/hospital has been changing to dental hospital with 5-7 departments in 2010's, and dental clinic is changing to specific dental clinic according to dental specialist system in 2018. The third one is that spatial composition is related with dental expertise at diverse levels. Spatial composition in dental school's dental hospital had been highly differentiated with dental expertise, dental department in medical center/hospital is partially subdivided with dental specialist system, but that of dental clinic is not changed according to dental specialist system. In addition to current spatial composition according to dental expertise, it is necessary to analyze the change of spatial composition with diachronic methods to develop the dental healthcare system.