• Title/Summary/Keyword: Spatial Statistical Models

Search Result 129, Processing Time 0.021 seconds

Study of the Derive of Core Habitats for Kirengeshoma koreana Nakai Using HSI and MaxEnt (HSI와 MaxEnt를 통한 나도승마 핵심서식지 발굴 연구)

  • Sun-Ryoung Kim;Rae-Ha Jang;Jae-Hwa Tho;Min-Han Kim;Seung-Woon Choi;Young-Jun Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.450-463
    • /
    • 2023
  • The objective of this study is to derive the core habitat of the Kirengeshoma koreana Nakai utilizing Habitat Suitability Index (HSI) and Maximum Entropy (MaxEnt) models. Expert-based models have been criticized for their subjective criteria, while statistical models face difficulties in on-site validation and integration of expert opinions. To address these limitations, both models were employed, and their outcomes were overlaid to derive the core habitat. Five variables were identified through a comprehensive literature review and spatial analysis based on appearance coordinates. The environmental variables encompass vegetation zone, forest type, crown density, annual precipitation, and effective soil depth. Through surveys involving six experts, importance rankings and SI (Suitability Index) scores were established for each variable, subsequently facilitating the creation of an HSI map. Using the same variables, the MaxEnt model was also executed, resulting in a corresponding map, which was merged to construct the definitive core habitat map. Out of 16 observed locations of K. koreana, 15 were situated within the identified core habitat. Furthermore, an area historically known to host K. koreana but not verified in the present, Mt. Yeongchwi, was found to lack a core habitat. These findings suggest that the developed models exhibit a high degree of accuracy and effectively reflect the current ecological landscape.

Estimation of Daily Maximum/Minimum Temperature Distribution over the Korean Peninsula by Using Spatial Statistical Technique (공간통계기법을 이용한 전국 일 최고/최저기온 공간변이의 추정)

  • 신만용;윤일진;서애숙
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 1999
  • The use of climatic information is essential in the industial society. More specialized weather servies are required to perform better industrial acivities including agriculture. Especially, crop models require daily weather data of crop growing area or cropping zones, where routine weather observations are rare. Estimates of the spatial distribution of daily climates might complement the low density of standard weather observation stations. This study was conducted to estimate the spatial distribution of daily minimum and maximum temperatures in Korean Peninsula. A topoclimatological technique was first applied to produce reasonable estimates of monthly climatic normals based on 1km $\times$ 1km grid cell over study area. Harmonic analysis method was then adopted to convert the monthly climatic normals into daily climatic normals. The daily temperatures for each grid cell were derived from a spatial interpolation procedure based on inverse-distance weighting of the observed deviation from the climatic normals at the nearest 4 standard weather stations. Data collected from more than 300 automatic weather systems were then used to validate the final estimates on several dates in 1997. Final step to confirm accuracy of the estimated temperature fields was comparing the distribution pattern with the brightness temperature fields derived from NOAA/AVHRR. Results show that differences between the estimated and the observed temperatures at 20 randomly selected automatic weather systems(AWS) range from -3.$0^{\circ}C$ to + 2.5$^{\circ}C$ in daily maximum, and from -1.8$^{\circ}C$ to + 2.2$^{\circ}C$ in daily minimum temperature. The estimation errors, RMSE, calculated from the data collected at about 300 AWS range from $1.5^{\circ}C$ to 2.5$^{\circ}C$ for daily maximum/minimum temperatures.

Mobile Source Emissions Estimates for Intra-zonal Travel Using Space Syntax Analysis (공간 구문론을 이용한 존내 자동차 배출량 추정 모형)

  • LEE, Kyu Jin;CHOI, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.107-122
    • /
    • 2016
  • This study aims to develop a framework to estimate mobile source emissions with the macroscopic travel demand model including enhanced estimates of intra-zonal travel emissions using Space Syntax analysis. It is acknowledged that "the land-use and transportation interaction model explains the influence of urban structure on accessibility and mobility pattern". Based upon this theory, the estimation model of intra-zonal travel emissions is presented with the models of total travel distance, total travel demand, and average travel speed of intra-zonal trips. Thess statistical models include several spatial indices derived from the Space Syntax analysis. It explains that urban spatial structure is a critical factor for intra-zonal travel emissions, which is lower in compact zone with smaller portion of land area, lower sprawl indicator, and more grid-type of road network. Also the suggested framework is applied in the evaluation of the effectiveness of bicycle lane project in Suwon, Korea. The estimated emissions including intra-zonal travel is as double as the results only with inter-zonal demands, which shows better performance of the suggested framework for more realistic outcomes. This framework is applicable to the estimation of mobile source emissions in nation-wide and the assessment of transportation-environment policies in regional level.

Application of Multi-Dimensional Precipitation Models to the Sampling Error Problem (관측오차문제에 대한 다차원 강우모형의 적용)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.441-447
    • /
    • 1997
  • Rainfall observation using rain gage network or satellites includes the sampling error depending on the observation methods or plans. For example, the sampling using rain gages is continuous in time but discontinuous in space, which is nothing but the source of the sampling error. The sampling using satellites is the reverse case that continuous in space and discontinuous in time. The sampling error may be quantified by use of the temporal-spatial characteristics of rainfall and the sampling design. One of recent works on this problem was done by North and Nakamoto (1989), who derived a formulation for estimating the sampling error based on the temporal-spatial rainfall spectrum and the design scheme. The formula enables us to design an optimal rain gage network or a satellite operation plan providing the statistical characteristics of rainfall. In this paper the formula is reviewed and applied for the sampling error problems using several multi-dimensional precipitation models. The results show the limitation of the formulation, which cannot distinguish the model difference in case the model parameters can reproduce similar second order statistics of rainfall. The limitation can be improved by developing a new way to consider the higher order statistics, and eventually the probability density function (PDF) of rainfall.

  • PDF

A Study on the Application of Suitable Urban Regeneration Project Types Reflecting the Spatial Characteristics of Urban Declining Areas (도시 쇠퇴지역 공간 특성을 반영한 적합 도시재생 사업유형 적용방안 연구)

  • CHO, Don-Cherl;SHIN, Dong-Bin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.148-163
    • /
    • 2021
  • The diversification of the New Deal urban regeneration projects, that started in 2017 in accordance with the "Special Act on Urban Regeneration Activation and Support", generated the increased demand for the accuracy of data-driven diagnosis and project type forecast. Thus, this research was conducted to develop an application model able to identify the most appropriate New Deal project type for "eup", "myeon" and "dong" across the country. Data for application model development were collected through Statistical geographic information service(SGIS) and the 'Urban Regeneration Comprehensive Information Open System' of the Urban Regeneration Information System, and data for the analysis model was constructed through data pre-processing. Four models were derived and simulations were performed through polynomial regression analysis and multinomial logistic regression analysis for the application of the appropriate New Deal project type. I verified the applicability and validity of the four models by the comparative analysis of spatial distribution of the previously selected New Deal projects by targeting the sites located in Seoul by each model and the result showed that the DI-54 model had the highest concordance rate.

Modeling Traffic Accident Occurrence Involving Child Pedestrians at School Zone (공간적 특성을 고려한 어린이 교통사고 모형 개발)

  • BEAK, Tea Hun;Son, Seulki;PARK, Byung Ho
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.6
    • /
    • pp.489-498
    • /
    • 2016
  • The objective of this study is to develop road traffic accident model involving child pedestrian especially at school zones and its surrounding area. The analysis is based upon traffic accident data collected near sixty elementary schools in City of Cheongju during 2012 and 2014. This study results in two statistical models ; one is to predict the number of road traffic accidents involving children, and the other is to predict EPDO(Equivalent Prperty Damage Only). These models are represented as Poisson models. which are statistically significant with the likelihood ratios of 0.533 and 0.273. The common explanatory variables of these models are the ratio of road section with more than 4 lanes, the number of entrance and exit, the number of signalized crosswalk in school zone, the number of school zone signage including road surface marking, and the number of speed limit signs. The specific variables are the length of road stretch in school zone, the number of reflector mirrors, and the number of signalized crosswalk outside school zone. It is concluded that these types of road safety facilities can reduce the number of traffic accidents involving children at school zones and its surrounding area.

Can Housing Prices Be an Alternative to a Census-based Deprivation Index? An Evaluation Based on Multilevel Modeling (주택가격이 센서스에 기반한 박탈지수의 대안이 될 수 있는가?: 다수준 모델에 기반한 평가)

  • Sohn, Chul;Nakaya, Tomoki
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.197-211
    • /
    • 2018
  • We conducted this research to examine how well regional housing prices are suited to use as an alternative to conventional census-based regional deprivation indices in health and medical geography studies. To examine the relative performance of mean regional housing prices compared to conventional census-based regional deprivation indices, we compared several multilevel logistic regression models, where the first level was individuals and the second was health districts in the Seoul Metropolitan Area (SMA) in Korea, for the sake of adjusting the regional clustering tendency of unknown factors. In these models, we predicted two dichotomous variables that represented individuals' after-lunch tooth brushing behavior and use of dental floss by individual characteristics and regional indices. Then, we compared the relative predictive performance of the models using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The results from the estimations showed that mean regional housing prices and census-based deprivation indices were correlated with the two types of dental health behavior in a statistical sense. The results also revealed that the model with mean regional housing prices showed smaller AIC and BIC compared with other models with conventional census-based deprivation indices. These results imply that it is possible for housing prices summarized using aerial units to be used as an alternative to conventional census-based deprivation indices when the census variables employed cannot properly reflect the characteristics of the aerial units.

Agroclimatology of North Korea for Paddy Rice Cultivation: Preliminary Results from a Simulation Experiment (생육모의에 의한 북한지방 시ㆍ군별 벼 재배기후 예비분석)

  • Yun Jin-Il;Lee Kwang-Hoe
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.2
    • /
    • pp.47-61
    • /
    • 2000
  • Agroclimatic zoning was done for paddy rice culture in North Korea based on a simulation experiment. Daily weather data for the experiment were generated by 3 steps consisting of spatial interpolation based on topoclimatological relationships, zonal summarization of grid cell values, and conversion of monthly climate data to daily weather data. Regression models for monthly climatological temperature estimation were derived from a statistical procedure using monthly averages of 51 standard weather stations in South and North Korea (1981-1994) and their spatial variables such as latitude, altitude, distance from the coast, sloping angle, and aspect-dependent field of view (openness). Selected models (0.4 to 1.6$^{\circ}C$ RMSE) were applied to the generation of monthly temperature surface over the entire North Korean territory on 1 km$\times$l km grid spacing. Monthly precipitation data were prepared by a procedure described in Yun (2000). Solar radiation data for 27 North Korean stations were reproduced by applying a relationship found in South Korea ([Solar Radiation, MJ m$^{-2}$ day$^{-1}$ ] =0.344 + 0.4756 [Extraterrestrial Solar Irradiance) + 0.0299 [Openness toward south, 0 - 255) - 1.307 [Cloud amount, 0 - 10) - 0.01 [Relative humidity, %), $r^2$=0.92, RMSE = 0.95 ). Monthly solar irradiance data of 27 points calculated from the reproduced data set were converted to 1 km$\times$1 km grid data by inverse distance weighted interpolation. The grid cell values of monthly temperature, solar radiation, and precipitation were summed up to represent corresponding county, which will serve as a land unit for the growth simulation. Finally, we randomly generated daily maximum and minimum temperature, solar irradiance and precipitation data for 30 years from the monthly climatic data for each county based on a statistical method suggested by Pickering et a1. (1994). CERES-rice, a rice growth simulation model, was tuned to accommodate agronomic characteristics of major North Korean cultivars based on observed phenological and yield data at two sites in South Korea during 1995~1998. Daily weather data were fed into the model to simulate the crop status at 183 counties in North Korea for 30 years. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to score the suitability of the county for paddy rice culture.

  • PDF

Comparison of Daily Rainfall Interpolation Techniques and Development of Two Step Technique for Rainfall-Runoff Modeling (강우-유출 모형 적용을 위한 강우 내삽법 비교 및 2단계 일강우 내삽법의 개발)

  • Hwang, Yeon-Sang;Jung, Young-Hun;Lim, Kwang-Suop;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1083-1091
    • /
    • 2010
  • Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. However, widely used estimation schemes fail to describe the realistic variability of daily precipitation field. We compare and contrast the performance of statistical methods for the spatial estimation of precipitation in two hydrologically different basins, and propose a two-step process for effective daily precipitation estimation. The methods assessed are: (1) Inverse Distance Weighted Average (IDW); (2) Multiple Linear Regression (MLR); (3) Climatological MLR; and (4) Locally Weighted Polynomial Regression (LWP). In the suggested simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before applying IDW scheme (one of the local scheme) to estimate the amount of precipitation separately on wet days. As the results, the suggested method shows the better performance of daily rainfall interpolation which has spatial differences compared with conventional methods. And this technique can be used for streamflow forecasting and downscaling of atmospheric circulation model effectively.

Prediction of Ground Condition and Evaluation of its Uncertainty by Simulated Annealing (모의 담금질 기법을 이용한 지반 조건 추정 및 불확실성 평가에 관한 연구)

  • Ryu Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.275-287
    • /
    • 2005
  • At the planning and design stages of a development of underground space or tunneling project, the information regarding ground conditions is very important to enhance economical efficiency and overall safety In general, the information can be expressed using RMR or Q-system and with the geophysical exploration image. RMR or Q-system can provide direct information of rock mass in a local scale for the design scheme. Oppositely, the image of geophysical exploration can provide an exthaustive but indirect information. These two types of the information have inherent uncertainties from various sources and are given in different scales and with their own physical meanings. Recently, RMR has been estimated in unsampled areas based on given data using geostatistical methods like Kriging and conditional simulation. In this study, simulated annealing(SA) is applied to overcome the shortcomings of Kriging methods or conditional simulations just using a primary variable. Using this technique, RMR and the image of geophysical exploration can be integrated to construct the spatial distribution of RM and to evaluate its uncertainty. The SA method was applied to solve an optimization problem with constraints. We have suggested the practical procedure of the SA technique for the uncertainty evaluation of RMR and also demonstrated this technique through an application, where it was used to identify the spatial distribution of RMR and quantify the uncertainty. For a geotechnical application, the objective functions of SA are defined using statistical models of RMR and the correlations between RMR and the reference image. The applicability and validity of this application are examined and then the result of uncertainty evaluation can be used to optimize the tunnel layout.