• Title/Summary/Keyword: Spatial Statistical Models

Search Result 129, Processing Time 0.032 seconds

Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes (공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관)

  • Park, Jincheol
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.353-360
    • /
    • 2015
  • Various statistical models have been proposed over the last decade for spatially correlated Gaussian outcomes. The spatial linear mixed model (SLMM), which incorporates a spatial effect as a random component to the linear model, is the one of the most widely used approaches in various application contexts. Employing link functions, SLMM can be naturally extended to spatial generalized linear mixed model for non-Gaussian outcomes (SGLMM). We review popular SGLMMs on non-Gaussian spatial outcomes and demonstrate their applications with available public data.

Generating high resolution of daily mean temperature using statistical models (통계적모형을 통한 고해상도 일별 평균기온 산정)

  • Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1215-1224
    • /
    • 2016
  • Climate information of the high resolution grid units is an important factor to explain the phenomenon in a variety of research field. Statistical linear interpolation models are computationally inexpensive and applicable to any climate data compared to the dynamic simulation method at regional scales. In this paper, we considered four different linear-based statistical interpolation models: general linear model, generalized additive model, spatial linear regression model, and Bayesian spatial linear regression model. The climate variable of interest was the daily mean temperature, where the spatial variability was explained using geographic terrain information: latitude, longitude, elevation. The data were collected by weather stations in January from 2003 and 2012. In the sense of RMSE and correlation coefficient, Bayesian spatial linear regression model showed better performance in reflecting the spatial pattern compared to the other models.

Cure rate proportional odds models with spatial frailties for interval-censored data

  • Yiqi, Bao;Cancho, Vicente Garibay;Louzada, Francisco;Suzuki, Adriano Kamimura
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.605-625
    • /
    • 2017
  • This paper presents proportional odds cure models to allow spatial correlations by including spatial frailty in the interval censored data setting. Parametric cure rate models with independent and dependent spatial frailties are proposed and compared. Our approach enables different underlying activation mechanisms that lead to the event of interest; in addition, the number of competing causes which may be responsible for the occurrence of the event of interest follows a Geometric distribution. Markov chain Monte Carlo method is used in a Bayesian framework for inferential purposes. For model comparison some Bayesian criteria were used. An influence diagnostic analysis was conducted to detect possible influential or extreme observations that may cause distortions on the results of the analysis. Finally, the proposed models are applied for the analysis of a real data set on smoking cessation. The results of the application show that the parametric cure model with frailties under the first activation scheme has better findings.

Robustness, Data Analysis, and Statistical Modeling: The First 50 Years and Beyond

  • Barrios, Erniel B.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.543-556
    • /
    • 2015
  • We present a survey of contributions that defined the nature and extent of robust statistics for the last 50 years. From the pioneering work of Tukey, Huber, and Hampel that focused on robust location parameter estimation, we presented various generalizations of these estimation procedures that cover a wide variety of models and data analysis methods. Among these extensions, we present linear models, clustered and dependent observations, times series data, binary and discrete data, models for spatial data, nonparametric methods, and forward search methods for outliers. We also present the current interest in robust statistics and conclude with suggestions on the possible future direction of this area for statistical science.

A spatial heterogeneity mixed model with skew-elliptical distributions

  • Farzammehr, Mohadeseh Alsadat;McLachlan, Geoffrey J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.373-391
    • /
    • 2022
  • The distribution of observations in most econometric studies with spatial heterogeneity is skewed. Usually, a single transformation of the data is used to approximate normality and to model the transformed data with a normal assumption. This assumption is however not always appropriate due to the fact that panel data often exhibit non-normal characteristics. In this work, the normality assumption is relaxed in spatial mixed models, allowing for spatial heterogeneity. An inference procedure based on Bayesian mixed modeling is carried out with a multivariate skew-elliptical distribution, which includes the skew-t, skew-normal, student-t, and normal distributions as special cases. The methodology is illustrated through a simulation study and according to the empirical literature, we fit our models to non-life insurance consumption observed between 1998 and 2002 across a spatial panel of 103 Italian provinces in order to determine its determinants. Analyzing the posterior distribution of some parameters and comparing various model comparison criteria indicate the proposed model to be superior to conventional ones.

Model identification of spatial autoregressive data analysis (공간 자기회귀모형의 식별)

  • 손건태;백지선
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.121-136
    • /
    • 1997
  • Spatial data is collected on a regular Cartesian lattice. In this paper we consider the model indentification of spatial autoregressive(SAR) models using AIC, BIC, pattern method. The proposed methods are considered as an application of AIC, BIC, 3-patterns for SAR models through three directions; row, column and diagonal directions. Using the Monte Carlo simulation, we test the efficiency of the proposed methods for various SAR models.

  • PDF

Quantitative Comparison of Probabilistic Multi-source Spatial Data Integration Models for Landslide Hazard Assessment

  • Park No-Wook;Chi Kwang-Hoon;Chung Chang-Jo F.;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.622-625
    • /
    • 2004
  • This paper presents multi-source spatial data integration models based on probability theory for landslide hazard assessment. Four probabilistic models such as empirical likelihood ratio estimation, logistic regression, generalized additive and predictive discriminant models are proposed and applied. The models proposed here are theoretically based on statistical relationships between landslide occurrences and input spatial data sets. Those models especially have the advantage of direct use of continuous data without any information loss. A case study from the Gangneung area, Korea was carried out to quantitatively assess those four models and to discuss operational issues.

  • PDF

Generalized Bayes estimation for a SAR model with linear restrictions binding the coefficients

  • Chaturvedi, Anoop;Mishra, Sandeep
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • The Spatial Autoregressive (SAR) models have drawn considerable attention in recent econometrics literature because of their capability to model the spatial spill overs in a feasible way. While considering the Bayesian analysis of these models, one may face the problem of lack of robustness with respect to underlying prior assumptions. The generalized Bayes estimators provide a viable alternative to incorporate prior belief and are more robust with respect to underlying prior assumptions. The present paper considers the SAR model with a set of linear restrictions binding the regression coefficients and derives restricted generalized Bayes estimator for the coefficients vector. The minimaxity of the restricted generalized Bayes estimator has been established. Using a simulation study, it has been demonstrated that the estimator dominates the restricted least squares as well as restricted Stein rule estimators.

A Comparative Study on Spatial Lattice Data Analysis - A Case Where Outlier Exists - (공간 격자데이터 분석에 대한 우위성 비교 연구 - 이상치가 존재하는 경우 -)

  • Kim, Su-Jung;Choi, Seung-Bae;Kang, Chang-Wan;Cho, Jang-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.193-204
    • /
    • 2010
  • Recently, researchers of the various fields where the spatial analysis is needed have more interested in spatial statistics. In case of data with spatial correlation, methodologies accounting for the correlation are required and there have been developments in methods for spatial data analysis. Lattice data among spatial data is analyzed with following three procedures: (1) definition of the spatial neighborhood, (2) definition of spatial weight, and (3) the analysis using spatial models. The present paper shows a spatial statistical analysis method superior to a general statistical method in aspect estimation by using the trimmed mean squared error statistic, when we analysis the spatial lattice data that outliers are included. To show validation and usefulness of contents in this paper, we perform a small simulation study and show an empirical example with a criminal data in BusanJin-Gu, Korea.

Exposed Noise Simulation for Urban Planning Alteration Using Spatial Statistical Model (공간통계모형을 이용한 도시계획변경에 따른 소음도 예측)

  • Ryu, Hunjae;Chun, Bum Seok;Park, In Kwon;Chang, Seo Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.948-951
    • /
    • 2014
  • Road traffic noise is closely related with urban forms and urban components, such as population, building, traffic and land-use, etc. Hence, it is possible to minimize the noise exposure problem depending on how to plan new town or urban planning alteration. This paper provides ways to apply for urban planning in consideration of noise through exposed noise estimation for urban planning alteration. Spatial autoregressive model which explains about 81.4% of road traffic noise from the former paper is used. The simulation results by the spatial statistical model are compared with those by the engineering program-based modeling for 5 small-scaled scenarios of urban planning alteration. The error from the limitation of containing informations inside the grid cell and the difficulties of reflecting acoustic phenomena is existed. Nevertheless, in the stage of preliminary design, the use of the statistical models that have been estimated well is useful in time and economically.

  • PDF