The wide application of various integrated location-based services (LBS social) and tourism application (app) has generated a large amount of trajectory space data. The trajectory data are used to identify popular tourist attractions with high density of tourists, and they are of great significance to smart service and emergency management of scenic spots. A hot spot analysis method is proposed, based on spatial clustering of trajectory stop points. The DBSCAN algorithm is studied with fast clustering speed, noise processing and clustering of arbitrary shapes in space. The shortage of parameters is manually selected, and an improved method is proposed to adaptively determine parameters based on statistical distribution characteristics of data. DBSCAN clustering analysis and contrast experiments are carried out for three different datasets of artificial synthetic two-dimensional dataset, four-dimensional Iris real dataset and scenic track retention point. The experiment results show that the method can automatically generate reasonable clustering division, and it is superior to traditional algorithms such as DBSCAN and k-means. Finally, based on the spatial clustering results of the trajectory stay points, the Getis-Ord Gi* hotspot analysis and mapping are conducted in ArcGIS software. The hot spots of different tourist attractions are classified according to the analysis results, and the distribution of popular scenic spots is determined with the actual heat of the scenic spots.
지반조사 결과 자료는 지반의 불균질성과 낮은 신뢰성을 갖는 일부 자료로 인해 불확실성을 갖게 된다. 이에 따라 지반조사 결과 자료를 활용하여 지반 특성을 해석할 경우 합리적인 공학적 판단을 위해 적절한 통계분석이 요구된다. 본 연구에서는 이상치 분석기법과 교차검증기법을 접목한 통계적 지반 공간 정보 분석 기법을 이용하여 대상지역 지반조사 자료 중 경향성을 상회하는 지반조사 지점을 선별하는 전문가시스템을 개발하였다. 개발 시스템을 이용하여 서울시 여의도 지역의 시추조사 자료를 바탕으로 지층구조 분석을 수행하였다. 그 결과 신뢰도가 낮은 것으로 판단되는 시추조사 자료를 결정하고, 본 지점을 제외한 여의도 지역의 기반암 섬도 분포를 확인하였다.
본 논문에서는 공간 데이터를 기반으로 한 도시의 다양한 통계 정보를 제안된 알고리즘을 통해서 시각화하고 시각화된 데이터를 지도와 사상(Mapping)하여 분석할 수 있게 할 뿐만 아니라 공간적 정보를 기반으로 의사 결정을 하는 경우 활용할 수 있는 문서를 사용자의 간단한 조작으로 프로그래밍 방식에 의해 작성해주는 시스템을 제안한다. 제안된 기법은 2차원 지도 데이터에서 특징데이터 값에 대해 색을 이용하여 표현하는 기법인 히트 맵 분석 (Heat Map Analysis)기법과 공간적 근접성을 정의할 때 이용되는 버퍼링 분석 (Buffering Analysis) 기법을 활용한다. 본 시스템을 통해서 공간적 정보를 시각화를 한다면 지역의 분포된 다양한 공간적 정보를 쉽게 파악할 수 있을 것이다. 또한 분석된 정보를 기반으로 제공되고 있는 문서 자동생성기능을 활용한다면 표현된 공간적 정보의 문서화에 필요한 많은 시간과 비용을 절감할 수 있을 것으로 기대된다.
Weather station based PET(Potential Evapotrarspiration) analysis has often been inadequate to meet the needs of regional-scale irrigation planning. A map of continuous PET surface would be better a solution for the spatial interpolation considering spatial variations. Using a normal PET data collected at the 54 meteorological stations in Korea, 10-days spatial distribution PET map was created using universal Kriging(UK). These estimation methods were evaluated by both visual assessments of the output maps and the quantitative comparison of error measures that were obtained from the cross validation. The universal Kriging method showed appropriate results in spatial interpolation from weather station based PET to spatial PET with low statistical errors.
Ecological methods were reviewed through reports such as environmental impact assessment and damage effect of fishery in the Korean watershed. Survey items in marine ecological field were included: phytoplankton, zooplankton, benthic animal, algae, adult fish, egg and juvenile of fish. A standardization of survey method in the field of community ecology was suggested to consider the convenience, Sequency in Use of device, accuracy of data collected from that. It is necessary that spatial data should be sufficiently acquired toy statistical analysis of biodiversity and spatial comparison. Quantitative sampling method must be inevitably adopted based nature of biota and geographical type of the survey area. The same sampling method can make the data compared spatially but can't be applicable in all area. Standardizing survey method should be by no means under certain restriction of study and would become different according to survey environments. The first thing is minutely understanding about ecological character of biota inhabiting in certain area, and then determining survey method.
This paper aims to study a method to estimate precise carbon absorption by quantification of forest information that uses accurate LiDAR data, hyperspectral image. To estimate precise carbon absorption value by using spatial data, a problem was found out of carbon absorption value estimation method with statistical method, which is already existed method, and then offered optimized carbon absorption estimation method with spatial information by analyzing with methods of compare digital aerial photogrammetry and LiDAR data. It turned out possible Precise classification and quantification in case of using LiDAR and hyperspectral image. Various classification of tree species was possible with use of LiDAR and hyperspectral image. Classification of hyperspectral image was matched in general with field survey and Mahalanobis distance classification method. Precise forest resources could be extracted using high density LiDAR data. Compared with existing method, 19.7% in forest area, 19.2% in total carbon absorption, 0.9% in absorption per unit area of difference created, and improvement was found out to be estimated precisely in international code.
Kriging is a nonparametric regression method used in geostatistics for estimating curves and surfaces for spatial data. It may come as a surprise that the Kriging estimator, normally derived as the best linear unbiased estimator, is also the solution of a particular variational problem. Thus, Kriging estimators can also be interpreted as generalized smoothing splines where the roughness penalty is determined by the covariance function of a spatial process. We build off the early work by Silverman (1982, 1984) and the analysis by Cox (1983, 1984), Messer (1991), Messer and Goldstein (1993) and others and develop an equivalent kernel interpretation of geostatistical estimators. Given this connection we show how a given covariance function influences the bias and variance of the Kriging estimate as well as the mean squared prediction error. Some specific asymptotic results are given in one dimension for Matern covariances that have as their limit cubic smoothing splines.
토지이용 분류 체계상에서의 종류라는 개념은 토지이용 변화의 분류 체계성에 그대로 적용시킬 수가 있다. 본 연구에서는 선형 판별 함수를 원용하는 최우법(Maximum likelihood method)으로 산출되는 토지이용분류의 공간적 결과와 Markov 전이 행렬 방법으로 산출되는 정량적 결과가 상호 보완하는 의미에서 합성모형으로 통합되었다. 본 연구에서는 다변수 판별 함수의 계산법과 Markov 연쇄행렬 계산법에 관하여 토의되고 그 합성 모형을 대상 지역에 실제 적용하여 그 결과 '90년, '95년 토지이용도가 예측 작성되었다. 모형화의 문제 및 예측의 정확도 역시 더욱 토의 되어야 하며 추후 개선의 여지를 남긴다.
관찰 단위들간 특정한 공간 종속관계를 지닌 공간모집단에서 사각형의 칸들로 분할한 후 각 칸마다 하나의 표본점을 임의추출하여 관심 변수의 모수를 추정할 때 탐색 관찰조건을 만족하는 인접한 표본단위만을 추가 관찰하여 모수를 추정하는 적합탐색 추정 방법을 층화 공간표본설계에 적용시켜 보았다. 모의자료를 설정한 가상의 2차원 공간모집단을 층화 공간표본설계에 의해 층화시킨 후 적합 탐색 추정방법을 적용시켜 본 결과, 단순히 공간모집단을 분할하는 전통적인 공간표본설계보다 적은 수의 표본이 관찰되었으며, 효율성이 크게 감소하지 않는 결과를 얻음으로써 층화효과와 적합탐색 관찰효과가 동시에 존재하는 적절한 추정 결과를 얻을 수 있었다.
We have estimated the vertical column density (VCD) of formaldehyde (HCHO) on a global scale using a multiple linear regression method (MRM) with Ozone Monitoring Instrument (OMI) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data. HCHO VCDs were estimated in regions of biogenic, pyrogenic, and anthropogenic emissions using independent variables, including $NO_2$ VCD, land surface temperature (LST), an enhanced vegetation index (EVI), and the mean fire radiative power (MFRP), which are strongly correlated with HCHO. To evaluate the HCHO estimates obtained using the MRM, we compared estimates of HCHO VCD data measured by OMI ($HCHO_{OMI}$) with those estimated by multiple linear regression equations (MRE) ($HCHO_{MRE}$). Good MRM performances were found, having the average statistical values (R = 0.91, slope = 1.03, mean bias = $-0.12{\times}10^{15}molecules\;cm^{-2}$, percent difference = 11.27%) between $HCHO_{MRE}$ and $HCHO_{OMI}$ in our study regions where high HCHO levels are present. Our results demonstrate that the MRM can be a useful tool for estimating atmospheric HCHO levels.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.