• Title/Summary/Keyword: Spatial Statistical Analysis Methods

Search Result 145, Processing Time 0.028 seconds

농업용수 수요량 분석을 위한 잠재증발산량 공간 분포 추정

  • Yu, Seung-Hwan;Choe, Jin-Yong
    • KCID journal
    • /
    • v.13 no.1
    • /
    • pp.39-49
    • /
    • 2006
  • Weather station based PET(Potential Evapotrarspiration) analysis has often been inadequate to meet the needs of regional-scale irrigation planning. A map of continuous PET surface would be better a solution for the spatial interpolation considering spatial variations. Using a normal PET data collected at the 54 meteorological stations in Korea, 10-days spatial distribution PET map was created using universal Kriging(UK). These estimation methods were evaluated by both visual assessments of the output maps and the quantitative comparison of error measures that were obtained from the cross validation. The universal Kriging method showed appropriate results in spatial interpolation from weather station based PET to spatial PET with low statistical errors.

  • PDF

Implementation of WebGIS for Integration of GIS Spatial Analysis and Social Network Analysis (GIS 공간분석과 소셜 네트워크 분석의 통합을 위한 WebGIS 구현)

  • Choi, Hyo-Seok;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.95-107
    • /
    • 2014
  • In general, topographical phenomena are represented graphically by data in the spatial domain, while attributes of the non-spatial domain are expressed by alpha-numeric texts. GIS functions for analysis of attributes in the non-spatial domain remain quite simple, such as search methods and simple statistical analysis. Recently, graph modeling and network analysis of social phenomena are commonly used for understanding various social events and phenomena. In this study, we applied the network analysis functions to the non-spatial domain data of GIS to enhance the overall spatial analysis. For this purpose, a novel design was presented to integrate the spatial database and the graph database, and this design was then implemented into a WebGIS system for better decision makings. The developed WebGIS with underlying synchronized databases, was tested in a simulated application about the selection of water supply households during an epidemic of the foot-and-mouse disease. The results of this test indicate that the developed WebGIS can contribute to improved decisions by taking into account the social proximity factors as well as geospatial factors.

A Spatial Analysis of Seismic Vulnerability of Buildings Using Statistical and Machine Learning Techniques Comparative Analysis (통계분석 기법과 머신러닝 기법의 비교분석을 통한 건물의 지진취약도 공간분석)

  • Seong H. Kim;Sang-Bin Kim;Dae-Hyeon Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.159-165
    • /
    • 2023
  • While the frequency of seismic occurrence has been increasing recently, the domestic seismic response system is weak, the objective of this research is to compare and analyze the seismic vulnerability of buildings using statistical analysis and machine learning techniques. As the result of using statistical technique, the prediction accuracy of the developed model through the optimal scaling method showed about 87%. As the result of using machine learning technique, because the accuracy of Random Forest method is 94% in case of Train Set, 76.7% in case of Test Set, which is the highest accuracy among the 4 analyzed methods, Random Forest method was finally chosen. Therefore, Random Forest method was derived as the final machine learning technique. Accordingly, the statistical analysis technique showed higher accuracy of about 87%, whereas the machine learning technique showed the accuracy of about 76.7%. As the final result, among the 22,296 analyzed building data, the seismic vulnerabilities of 1,627(0.1%) buildings are expected as more dangerous when the statistical analysis technique is used, 10,146(49%) buildings showed the same rate, and the remaining 10,523(50%) buildings are expected as more dangerous when the machine learning technique is used. As the comparison of the results of using advanced machine learning techniques in addition to the existing statistical analysis techniques, in spatial analysis decisions, it is hoped that this research results help to prepare more reliable seismic countermeasures.

Bayesian Modeling of Mortality Rates for Colon Cancer

  • Kim Hyun-Joong
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.177-190
    • /
    • 2006
  • The aim of this study is to propose a Bayesian model for fitting mortality rate of colon cancer. For the analysis of mortality rate of a disease, factors such as age classes of population and spatial characteristics of the location are very important. The model proposed in this study allows the age class to be a random effect in addition to its conventional role as the covariate of a linear regression, while the spatial factor being a random effect. The model is fitted using Metropolis-Hastings algorithm. Posterior expected predictive deviances, standardized residuals, and residual plots are used for comparison of models. It is found that the proposed model has smaller residuals and better predictive accuracy. Lastly, we described patterns in disease maps for colon cancer.

Landsilde Analysis of Yongin Area Using Spatial Database (공간 데이터베이스를 이용한 1991년 용인지역 산사태 분석)

  • 이사로;민경덕
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.321-332
    • /
    • 2000
  • The purpose of this study is to analyze landslide that occurred in Yongin area in 1991 using spatial database. For this, landslide locations are detected from aerial photographs interpretation and field survey. The locations of landslide, topography, soil, forest and geology were constructed to spatial database using Geographic Information System (GIS). To establish occurrence factors of landslide, slope, aspect and curvature of topography were calculated from the topographic database. Texture, material, drainage and effective thickness of soil were extracted from the soil database, and type, age, diameter and density of wood were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the TM satellite image. Landslide was analyzed using spatial correlation between the landslide and the landslide occurrence factors by bivariate probability methods. GIS was used to analyze vast data efficiently and statistical programs were used to maintain specialty and accuracy. The result can be used to prevention of hazard, land use planning and construction planning as basic data.

  • PDF

Intensity estimation with log-linear Poisson model on linear networks

  • Idris Demirsoy;Fred W. Hufferb
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • Purpose: The statistical analysis of point processes on linear networks is a recent area of research that studies processes of events happening randomly in space (or space-time) but with locations limited to reside on a linear network. For example, traffic accidents happen at random places that are limited to lying on a network of streets. This paper applies techniques developed for point processes on linear networks and the tools available in the R-package spatstat to estimate the intensity of traffic accidents in Leon County, Florida. Methods: The intensity of accidents on the linear network of streets is estimated using log-linear Poisson models which incorporate cubic basis spline (B-spline) terms which are functions of the x and y coordinates. The splines used equally-spaced knots. Ten different models are fit to the data using a variety of covariates. The models are compared with each other using an analysis of deviance for nested models. Results: We found all covariates contributed significantly to the model. AIC and BIC were used to select 9 as the number of knots. Additionally, covariates have different effects such as increasing the speed limit would decrease traffic accident intensity by 0.9794 but increasing the number of lanes would result in an increase in the intensity of traffic accidents by 1.086. Conclusion: Our analysis shows that if other conditions are held fixed, the number of accidents actually decreases on roads with higher speed limits. The software we currently use allows our models to contain only spatial covariates and does not permit the use of temporal or space-time covariates. We would like to extend our models to include such covariates which would allow us to include weather conditions or the presence of special events (football games or concerts) as covariates.

Compositional data analysis by the square-root transformation: Application to NBA USG% data

  • Jeseok Lee;Byungwon Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.349-363
    • /
    • 2024
  • Compositional data refers to data where the sum of the values of the components is a constant, hence the sample space is defined as a simplex making it impossible to apply statistical methods developed in the usual Euclidean vector space. A natural approach to overcome this restriction is to consider an appropriate transformation which moves the sample space onto the Euclidean space, and log-ratio typed transformations, such as the additive log-ratio (ALR), the centered log-ratio (CLR) and the isometric log-ratio (ILR) transformations, have been mostly conducted. However, in scenarios with sparsity, where certain components take on exact zero values, these log-ratio type transformations may not be effective. In this work, we mainly suggest an alternative transformation, that is the square-root transformation which moves the original sample space onto the directional space. We compare the square-root transformation with the log-ratio typed transformation by the simulation study and the real data example. In the real data example, we applied both types of transformations to the USG% data obtained from NBA, and used a density based clustering method, DBSCAN (density-based spatial clustering of applications with noise), to show the result.

Analysis of massive data in astronomy (천문학에서의 대용량 자료 분석)

  • Shin, Min-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1107-1116
    • /
    • 2016
  • Recent astronomical survey observations have produced substantial amounts of data as well as completely changed conventional methods of analyzing astronomical data. Both classical statistical inference and modern machine learning methods have been used in every step of data analysis that range from data calibration to inferences of physical models. We are seeing the growing popularity of using machine learning methods in classical problems of astronomical data analysis due to low-cost data acquisition using cheap large-scale detectors and fast computer networks that enable us to share large volumes of data. It is common to consider the effects of inhomogeneous spatial and temporal coverage in the analysis of big astronomical data. The growing size of the data requires us to use parallel distributed computing environments as well as machine learning algorithms. Distributed data analysis systems have not been adopted widely for the general analysis of massive astronomical data. Gathering adequate training data is expensive in observation and learning data are generally collected from multiple data sources in astronomy; therefore, semi-supervised and ensemble machine learning methods will become important for the analysis of big astronomical data.

A New Forest Fire Detection Algorithm using Outlier Detection Method on Regression Analysis between Surface temperature and NDVI

  • Huh, Yong;Byun, Young-Gi;Son, Jeong-Hoon;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.574-577
    • /
    • 2006
  • In this paper, we developed a forest fire detection algorithm which uses a regression function between NDVI and land surface temperature. Previous detection algorithms use the land surface temperature as a main factor to discriminate fire pixels from non-fire pixels. These algorithms assume that the surface temperatures of non-fire pixels are intrinsically analogous and obey Gaussian normal distribution, regardless of land surface types and conditions. And the temperature thresholds for detecting fire pixels are derived from the statistical distribution of non-fire pixels’ temperature using heuristic methods. This assumption makes the temperature distribution of non-fire pixels very diverse and sometimes slightly overlapped with that of fire pixel. So, sometimes there occur omission errors in the cases of small fires. To ease such problem somewhat, we separated non-fire pixels into each land cover type by clustering algorithm and calculated the residuals between the temperature of a pixel under examination whether fire pixel or not and estimated temperature of the pixel using the linear regression between surface temperature and NDVI. As a result, this algorithm could modify the temperature threshold considering land types and conditions and showed improved detection accuracy.

  • PDF

A Study on Detection Methodology for Influential Areas in Social Network using Spatial Statistical Analysis Methods (공간통계분석기법을 이용한 소셜 네트워크 유력지역 탐색기법 연구)

  • Lee, Young Min;Park, Woo Jin;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2014
  • Lately, new influentials have secured a large number of volunteers on social networks due to vitalization of various social media. There has been considerable research on these influential people in social networks but the research has limitations on location information of Location Based Social Network Service(LBSNS). Therefore, the purpose of this study is to propose a spatial detection methodology and application plan for influentials who make comments about diverse social and cultural issues in LBSNS using spatial statistical analysis methods. Twitter was used to collect analysis object data and 168,040 Twitter messages were collected in Seoul over a month-long period. In addition, 'politics,' 'economy,' and 'IT' were set as categories and hot issue keywords as given categories. Therefore, it was possible to come up with an exposure index for searching influentials in respect to hot issue keywords, and exposure index by administrative units of Seoul was calculated through a spatial joint operation. Moreover, an influential index that considers the spatial dependence of the exposure index was drawn to extract information on the influential areas at the top 5% of the influential index and analyze the spatial distribution characteristics and spatial correlation. The experimental results demonstrated that spatial correlation coefficient was relatively high at more than 0.3 in same categories, and correlation coefficient between politics category and economy category was also more than 0.3. On the other hand, correlation coefficient between politics category and IT category was very low at 0.18, and between economy category and IT category was also very weak at 0.15. This study has a significance for materialization of influentials from spatial information perspective, and can be usefully utilized in the field of gCRM in the future.