GIS 기술의 발달로 많은 양의 공간 데이터가 축적됨에 따라 공간 데이터 마이닝의 중요성이 커지고 있다. 본 논문에서는 새로운 공간 데이터 마이닝 시스템 SD-Miner를 제안한다. SD-Miner는 크게 입력과 출력을 담당하는 사용자 인터페이스, 공간 데이터 마이닝 기능을 처리하는 데이터 마이닝 모듈, DBMS를 이용하여 데이터를 저장하고 관리하는 데이터 저장 모듈의 세 부분으로 구성된다. 특히, 데이터 마이닝 함수 모듈에서는 공간 데이터 마이닝의 주요 기법인 공간 클러스터링, 공간 분류, 공간 특성화, 시공 간 연관규칙 탐사 기능을 제공한다. SD-Miner는 다음과 같은 특징을 가진다. SD-Miner는 사용자로 하여 금 공간 데이터 마이닝뿐만 아니라 비 공간 데이터에 대한 마이닝도 가능하게 하며, 각 마이닝 함수들을 라이브러리 형태로 제공하기 때문에 다른 시스템에서도 쉽게 사용 가능하다. 또한, 마이닝 매개 변수들을 테이블의 형태로 입력받기 때문에 시스템의 범용성이 높다. 개발된 SD-Miner의 실용성을 규명하기 위하여 실제 공간 데이터를 이용한 데이터 마이닝을 수행함으로써 여러 가지 의미있는 결과를 도출한다.
Recently, there is an increasing demand for applications utilizing maps and locations such as autonomous vehicles and location-based services. Since these applications are developed based on spatial data, interest in spatial data processing is increasing and various studies are being conducted. In this paper, I propose a parallel mining algorithm using the CUDA library to efficiently analyze large spatial data. Spatial data includes both geometric (spatial) and non-spatial (aspatial) attributes. The proposed parallel spatial data mining algorithm analyzes both the geometric and non-spatial relationships between two layers. The experiment was performed on graphics cards containing CUDA cores based on TIGER/Line data, which is the actual spatial data for the US census. Experimental results show that the proposed parallel algorithm using CUDA greatly improves spatial data mining performance.
홍보우편 서비스의 활성화와 효율적인 마케팅 캠페인을 위해서 GIS 및 시간/공간마이닝을 접목한 홍보우편 시스템을 개발하였다. 이 시스템은 정확한 고객선정을 위해서 순차/주기패턴을 이용한 구매 성향 정보와 RFM 분석 및 군집화 기법을 이용한 라이프스타일 군집 정보를 제공한다. 제안한 홍보우편 시스템을 통해 원청업체는 고객의 요구사항에 맞는 마케팅 캠페인이 가능하며, 온라인상에서 고객 선정, 홍보물 제작 및 배달까지의 "one-stop" 서비스가 가능하다.
A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.
대용량의 공간(spatial) 데이터베이스에서 사용자에게 관심있고 일반화된 지식을 추출하는 것은 지형 정보 시스템이나 지식 베이스 시스템의 개발에 중요한 기법중의 하나이다. 본 논문은 공간 데이터 마이닝에 널리 사용되는 일반화(generalization) 방법을 확장한 공간 데이터 마이닝 모듈에 공간 데이터를 추론할 수 있도록 구축된 규칙베이스(rulebase)를 통합한 공간데이터 마이닝 시스템을 제안한다. 이를 위한 전위기로서 공간 데이터 우선(spatial data dominated)과 비공간 데이터 우선(nonspatial data dominated) 마이닝을 병합한 방식과 다중 주제도(multiple thematic map)가 주어졌을 때의 공간 지식을 추출해 낼 수 있는 방식을 제안한다. 또한 후위기로서 공간 객체들간의 위상 관계(topological relationship)를 추론하기 위한 공간 규칙 베이스를 구축한다.
공간 및 비 공간 데이터에서 알지 못했던 패턴을 탐사하는 빈발 패턴 탐사 기법은 마이닝 분야에서 가장 핵심적인 부분으로 많은 연구가 활발히 진행되고 있다. 기존의 자료구조들은 트리 구조 및 배열 구조로써 밀집 또는 희소 빈발 패턴에서 성능 저하를 보인다. 대용량의 공간 데이터는 밀집 및 희소 빈발 패턴을 둘 다 가지므로 단일 알고리즘으로 빠르게 탐사 하는 것은 중요하다. 본 논문에서는 단일 알고리즘을 사용하면서도 밀집 및 희소 빈발 패턴 모두에 대해 빠르게 빈발 패턴을 마이닝할 수 있는 압축된 패트리샤 빈발 패턴 트리라는 새로운 자료구조와 이를 사용한 빈발 패턴 마이닝 알고리즘을 제안한다. 실험 평가는 제안한 알고리즘이 대용량 희소 및 밀집 빈발 데이터에서 기존의 FP-Growth 알고리즘 보다 약 10배 정도 빠르게 빈발 패턴을 탐사하는 것을 보인다.
최근 마케팅이나 기업전략 분야에서 고객관리 및 점포관리 등의 업무를 위하여 GIS 기법을 적용한 다양한 응용시스템이 개발되고 있다. 그러나 기존의 시스템들은 대부분 개별점포나 고객 담당자의 경험치를 이용하여 이루어져 왔으며, 특정업종이나 특정 고객들에 대한 객관적인 분석시스템이 제시되지 않았다. 따라서 본 연구에서는 GIS 기법뿐만 아니라 시공간 데이터마이닝 기법을 적용한 gCRMs을 개발하였다. 본 시스템은 상권추출을 위한 새로운 시공간 데이터마이닝 기법을 개발하여 다양한 GIS 응용S/W의 개발이 가능하며, 상권에서 추출된 특성정보와 상권에서 발생하는 매출 등을 정성적, 정량적으로 평가할 수 있으며, 더 많은 다양한 지역에 적용하기 위한 일반화 기술의 원천기술을 획득하여 향후 기술을 이용한 각종 마케팅이 가능하다. 또한 도지시역의 변화를 예측하는 것과 같은 시계열분석 등의 모델링 툴을 개발하는 기초적인 기술을 제공할 수 있다.
본 연구의 목적은 GIS와 공간 데이터마이닝 방법을 이용하여 교통사고의 공간적 패턴을 살펴보고 이웃한 공간 객체와의 공간적 연관성을 탐색하는 것이다. 이를 위하여 서울시 강남구 교통사고 데이터를 이용하여 공간적 경향 분석, 군집 분석 및 군집의 특성 기술, 이웃한 공간 객체와의 연관 분석을 실시하였다. 그 결과, 강남구의 교통사고는 특징적인 4개의 군집 유형을 통해 분류될 수 있으며, 각 군집별로 차별적인 특성들을 보여주고 있다. 또한, 교통사고의 발생 위치와 이웃한 공간 객체들과의 연관성에서는 공간 객체들의 개념수준이나 공간적 관계의 수준에 따라 다양한 규칙들이 발견되었다. 이러한 규칙들은 모두가 유의미하거나 흥미로울 수는 없지만, 맥락에 따라 다양하게 해석될 수 있으며, 보다 심화된 인구를 위한 새로운 가설들로 사용될 수 있을 것이다.
대용량의 공간데이터베이스로부터 암시적이고 유용한 지식을 자동적으로 추출하는 공간데이터 마이닝은 데이타 양이 급격히 증가하면서 필요성이 더욱 증대되고 있다. 공간데이터 마이닝에서 데이타를 분석하여 유사한 그룹으로 분류하는 공간 클러스터링은 매우 중요한 분야이다. 기존 연구에서 공간 클러스터링을 위한 여러 가지 알고리즘들이 제시되었지만, 다음과 같은 문제점들이 있다. 먼저 클러스터링을 위하여 객체들 간의 거리론 기반으로 하므로 데이타 양이 많아질수록 계산 비용이 커진다. 또한, 메모리 상주 데이타를 대상으로 하므로 대용량의 데이타인 경우에 효율이 떨어진다. 본 논문에서는 공간데이터 마이닝을 위하여 그리드 셀을 기반으로 한 효율적인 공간 클러스터링 방법을 제시한다. 이 클러스터링에서는 기존 공간 클러스터링 기법들의 문제점을 해결하는데 중점을 둔다. 세부적으로 공간 클러스터링의 효율성을 높이기 위하여 클러스터링시에 발생하는 비용(계산량)을 감소시키는 것이다. 이를 위해서 공간지역성을 보장하는 대표적인 공간분할 방법인 그리드 셀을 기반으로 한 공간 클러스터링 기법을 제시한다.
최근 모바일 컴퓨팅 시스템에서 위치 기반 서비스(Location Based System: LBS)에 대한 연구가 활발히 진행되고 있다. 시공간 이동 시퀀스 마이닝은 이동 경로 데이터로부터 사용자 이동 패턴을 추출하는 새로운 마이닝 기법이다. 시공간 이동 시퀀스 패턴 마이닝은 기존의 빈발 패턴 마이닝 기법과 유사하나 몇 가지 차이점이 있다. 빈발 패턴 마이닝은 장바구니 분석에서와 같이 고객이 구입한 아이템과 관련된 것이나 시공간 이동 시퀀스 패턴 마이닝은 사용자 이동 시퀀스 경로를 대상으로 한다. 또한 사용자의 관심도를 반영하기 위해 해당 위치에서의 소요시간을 고려한다. 본 연구는 대표적인 빈발 패턴 마이닝 기법의 하나인 Apriori 알고리즘에 이동 시퀀스 데이터를 적용하여 Apriori_msp 알고리즘을 제안하였으며 성능 평가를 수행한 결과를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.