• Title/Summary/Keyword: Spatial False Alarms

Search Result 9, Processing Time 0.022 seconds

Spectrum Sensing and Data Transmission in a Cognitive Relay Network Considering Spatial False Alarms

  • Tishita, Tasnina A.;Akhter, Sumiya;Islam, Md. Imdadul;Amin, M. Ruhul
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.459-470
    • /
    • 2014
  • In this paper, the average probability of the symbol error rate (SER) and throughput are studied in the presence of joint spectrum sensing and data transmission in a cognitive relay network, which is in the environment of an optimal power allocation strategy. In this investigation, the main component in calculating the secondary throughput is the inclusion of the spatial false alarms, in addition to the conventional false alarms. It has been shown that there exists an optimal secondary power amplification factor at which the probability of SER has a minimum value, whereas the throughput has a maximum value. We performed a Monte-Carlo simulation to validate the analytical results.

Anomaly Detection in Medical Wireless Sensor Networks

  • Salem, Osman;Liu, Yaning;Mehaoua, Ahmed
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.272-284
    • /
    • 2013
  • In this paper, we propose a new framework for anomaly detection in medical wireless sensor networks, which are used for remote monitoring of patient vital signs. The proposed framework performs sequential data analysis on a mini gateway used as a base station to detect abnormal changes and to cope with unreliable measurements in collected data without prior knowledge of anomalous events or normal data patterns. The proposed approach is based on the Mahalanobis distance for spatial analysis, and a kernel density estimator for the identification of abnormal temporal patterns. Our main objective is to distinguish between faulty measurements and clinical emergencies in order to reduce false alarms triggered by faulty measurements or ill-behaved sensors. Our experimental results on both real and synthetic medical datasets show that the proposed approach can achieve good detection accuracy with a low false alarm rate (less than 5.5%).

Optical HPEJTC system for removing false alarm and missing in the multitarget correlation (다중 표적 상관에 기인한 상관오류와 유실 제거를 위한 광 HPEJTC 시스템)

  • 이상이;류충상;김은수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.58-67
    • /
    • 1995
  • In this paper, we present a new HPEJTC system which is capable of real-time multi-target recognition and tracking with better discrimination by extracting the phase signal of reference function from the JTPS of the conventional optical JTC retaining the amplitude signal of the input function. In order to test the correlation discrimination performance of the HPEJTC system, some experiments are carried out on the scenarios susceptible to the false alarms and missing in which many similar targets are periodically loacted. And, the proposed HPEJTC is analyzed to be the real function version of the POF and finally the possibility of the real-time implementation of the POF is suggested, because it can be implemented by using spatial light modulator, CCD detector and some other optical components.

  • PDF

Multiple crack evaluation on concrete using a line laser thermography scanning system

  • Jang, Keunyoung;An, Yun-Kyu
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.201-207
    • /
    • 2018
  • This paper proposes a line laser thermography scanning (LLTS) system for multiple crack evaluation on a concrete structure, as the core technology for unmanned aerial vehicle-mounted crack inspection. The LLTS system consists of a line shape continuous-wave laser source, an infrared (IR) camera, a control computer and a scanning jig. The line laser generates thermal waves on a target concrete structure, and the IR camera simultaneously measures the corresponding thermal responses. By spatially scanning the LLTS system along a target concrete structure, multiple cracks even in a large scale concrete structure can be effectively visualized and evaluated. Since raw IR data obtained by scanning the LLTS system, however, includes timely- and spatially-varying IR images due to the limited field of view (FOV) of the LLTS system, a novel time-spatial-integrated (TSI) coordinate transform algorithm is developed for precise crack evaluation in a static condition. The proposed system has the following technical advantages: (1) the thermal wave propagation is effectively induced on a concrete structure with low thermal conductivity of approximately 0.8 W/m K; (2) the limited FOV issues can be solved by the TSI coordinate transform; and (3) multiple cracks are able to be visualized and evaluated by normalizing the responses based on phase mapping and spatial derivative processes. The proposed LLTS system is experimentally validated using a concrete specimen with various cracks. The experimental results reveal that the LLTS system successfully visualizes and evaluates multiple cracks without false alarms.

Scale Invariant Target Detection using the Laplacian Scale-Space with Adaptive Threshold (라플라스 스케일스페이스 이론과 적응 문턱치를 이용한 크기 불변 표적 탐지 기법)

  • Kim, Sung-Ho;Yang, Yu-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.66-74
    • /
    • 2008
  • This paper presents a new small target detection method using scale invariant feature. Detecting small targets whose sizes are varying is very important to automatic target detection. Scale invariant feature using the Laplacian scale-space can detect different sizes of targets robustly compared to the conventional spatial filtering methods with fixed kernel size. Additionally, scale-reflected adaptive thresholding can reduce many false alarms. Experimental results with real IR images show the robustness of the proposed target detection in real world.

Flame Verification using Motion Orientation and Temporal Persistency

  • Hwang, Hyun-Jae;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.282-285
    • /
    • 2009
  • This paper proposes a flame verification algorithm using motion and spatial persistency. Most previous vision-based methods using color information and temporal variations of pixels produce frequent false alarms due to the use of many heuristic features. To solve these problems, we used a Bayesian Networks. In addition, since the shape of flame changes upwards irregularly due to the airflow caused by wind or burning material, we distinct real flame from moving objects by checking the motion orientation and temporal persistency of flame regions to remove the misclassification. As a result, the use of two verification steps and a Bayesian inference improved the detection performance and reduced the missing rate.

  • PDF

Android malicious code Classification using Deep Belief Network

  • Shiqi, Luo;Shengwei, Tian;Long, Yu;Jiong, Yu;Hua, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.454-475
    • /
    • 2018
  • This paper presents a novel Android malware classification model planned to classify and categorize Android malicious code at Drebin dataset. The amount of malicious mobile application targeting Android based smartphones has increased rapidly. In this paper, Restricted Boltzmann Machine and Deep Belief Network are used to classify malware into families of Android application. A texture-fingerprint based approach is proposed to extract or detect the feature of malware content. A malware has a unique "image texture" in feature spatial relations. The method uses information on texture image extracted from malicious or benign code, which are mapped to uncompressed gray-scale according to the texture image-based approach. By studying and extracting the implicit features of the API call from a large number of training samples, we get the original dynamic activity features sets. In order to improve the accuracy of classification algorithm on the features selection, on the basis of which, it combines the implicit features of the texture image and API call in malicious code, to train Restricted Boltzmann Machine and Back Propagation. In an evaluation with different malware and benign samples, the experimental results suggest that the usability of this method---using Deep Belief Network to classify Android malware by their texture images and API calls, it detects more than 94% of the malware with few false alarms. Which is higher than shallow machine learning algorithm clearly.

An Optimal Way to Index Searching of Duality-Based Time-Series Subsequence Matching (이원성 기반 시계열 서브시퀀스 매칭의 인덱스 검색을 위한 최적의 기법)

  • Kim, Sang-Wook;Park, Dae-Hyun;Lee, Heon-Gil
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1003-1010
    • /
    • 2004
  • In this paper, we address efficient processing of subsequence matching in time-series databases. We first point out the performance problems occurring in the index searching of a prior method for subsequence matching. Then, we propose a new method that resolves these problems. Our method starts with viewing the index searching of subsequence matching from a new angle, thereby regarding it as a kind of a spatial-join called a window-join. For speeding up the window-join, our method builds an R*-tree in main memory for f query sequence at starting of sub-sequence matching. Our method also includes a novel algorithm for joining effectively one R*-tree in disk, which is for data sequences, and another R*-tree in main memory, which is for a query sequence. This algorithm accesses each R*-tree page built on data sequences exactly cure without incurring any index-level false alarms. Therefore, in terms of the number of disk accesses, the proposed algorithm proves to be optimal. Also, performance evaluation through extensive experiments shows the superiority of our method quantitatively.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.