• Title/Summary/Keyword: Spatial Environmental Information

Search Result 1,244, Processing Time 0.031 seconds

Foreword to the Special Issue on the 2017 Environmental Spatial Information Research Papers Competition (2017 '친(親)환경도우미' 환경공간정보 우수논문 공모전)

  • Kim, Shin-yup;Lee, Woo-Kyun;Kim, Sang-Wan;Yoon, Jeong-Ho;Lee, Hoonyol;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1041-1046
    • /
    • 2017
  • The Ministry of Environment(ME) has been producing and providing various environmental spatial information including land-cover maps in order to effectively cope with environmental issues. With the advent of the 4th industrial revolution era and the frequent occurrence of environmental disasters, the necessity of combining the environmental spatial information with the newest technology is increasing. By considering the increased necessity, the ME and the Korean Society of Remote Sensing held the 2017 Environmental Spatial Information Research Paper Competition with the aim of both discovering new application fields of environmental spatial information and supporting outstanding researchers. The outstanding 9 papers were finally selected after reviewing 51 papers submitted for the competition. This special issue includes the 9 papers that address advanced methodologies and application results based on environmental spatial information, as well as recent environmental issues. We expect the methodologies and applications presented in this special issue would be a reference anthology for users of environmental spatial information.

Standardization Plan for Activation of Environmental Impact Assessment based on Spatial Information (공간정보 기반 환경영향평가 활성화를 위한 표준화 방안)

  • Jang, Jung-yoon;Cho, Namwook;Lee, Moung Jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.433-446
    • /
    • 2019
  • Environmental impact assessment has been performed as preliminary assessment system in order to conserve environment value and minimize negative effect from development. Assessment based on data has been necessary to strengthen objectivity in process of Environmental impact assessment process. Furthermore extended use of spatial information in Environmental impact assessment system has been required through spatial information provided at government level and possibility connected with spatial information in Environmental impact assessment. However spatial information has not been systematically utilized in current Environmental impact assessment. Also the environmental impact assessment workers including assessment government employees, agencies of Environmental impact assessment document and review agencies lack an understanding in the concept of spatial information, so there is limit about their use to efficiently. In order to improve these limits in use of spatial information, this study suggested measures to standardize spatial information (coordinate and attribute table). To do so, based on coordinate and standards certified by the government, this study defined standard coordinates (GRS-80, central datum point, False East: 100000, False North: 200000) and established 9 default items. Lastly, the aforementioned standards were tested for actual environmental impact assessment projects. Standardization measures suggested in this study are expected to contribute to invigorate spatial information utilization in Environmental impact assessment and expand the scope of the assessment.

Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method

  • Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.161-167
    • /
    • 2021
  • This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.

Artificial Intelligence-Based Detection of Smoke Plume and Yellow Dust from GEMS Images (인공지능 기반의 GEMS 산불연기 및 황사 탐지)

  • Yemin Jeong;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Soyeon Choi;Yungyo Im;Youngmin Seo;Jeong-Ah Yu;Kyoung-Hee Sung;Sang-Min Kim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.859-873
    • /
    • 2023
  • Wildfires cause a lot of environmental and economic damage to the Earth over time. Various experiments have examined the harmful effects of wildfires. Also, studies for detecting wildfires and pollutant emissions using satellite remote sensing have been conducted for many years. The wildfire product for the Geostationary Environmental Monitoring Spectrometer (GEMS), Korea's first environmental satellite sensor, has not been provided yet. In this study, a false-color composite for better expression of wildfire smoke was created from GEMS and used in a U-Net model for wildfire detection. Then, a classification model was constructed to distinguish yellow dust from the wildfire smoke candidate pixels. The proposed method can contribute to disaster monitoring using GEMS images.

A Study on the Estimation Method of Carbon Storage Using Environmental Spatial Information and InVEST Carbon Model: Focusing on Sejong Special Self-Governing City - Using Ecological and Natural Map, Environmental Conservation Value Assessment Map, and Urban Ecological Map - (환경공간정보와 InVEST Carbon 모형을 활용한 탄소저장량 추정 방법에 관한 연구: 세종시를 중심으로 - 생태·자연도, 국토환경성평가지도, 도시생태현황지도를 대상으로 -)

  • Hwang, Jin-Hoo;Jang, Rae-ik;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.5
    • /
    • pp.15-27
    • /
    • 2022
  • Climate change is considered a severe global problem closely related to carbon storage. However, recent urbanization and land-use changes reduce carbon stocks in terrestrial ecosystems. Recently, the role of protected areas has been emphasized as a countermeasure to the climate change, and protected areas allow the area to continue to serve as a carbon sink due to legal restrictions. This study attempted to expand the scope of these protected areas to an evaluation-based environmental spatial information theme map. In this study, the area of each grade was compared, and the distribution of land cover for each grade was analyzed using the Ecological and Nature Map, Environmental Conservation Value Assessment Map and Urban Ecological Map of Sejong Special Self-Governing City. Based on this, the average carbon storage for each grade was derived using the InVEST Carbon model. As a result of the analysis, the high-grade area of the environmental spatial information generally showed a wide area of the natural area represented by the forest area, and accordingly, the carbon storage amount was evaluated to be high. However, there are differences in the purpose of production, evaluation items, and evaluation methods between each environmental spatial information, there are differences in area, land cover, and carbon storage. Through this study, environmental spatial information based on the evaluation map can be used for land use management in the carbon aspect, and it is expected that a management plan for each grade suitable for the characteristics of each environmental spatial information is required.

A Study on the Environmental Control System using Spatial Information in Ubiquitous Housing Environment - focusing on Energy Monitoring System (유비쿼터스 주거환경 환경조절시스템에서 공간정보를 활용한 에너지 모니터링 시스템에 관한 기초 연구)

  • Lee, Ye-Ri;Park, Nam-Hee;Choi, Jin-Won
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.193-198
    • /
    • 2009
  • This study focuses on building an effective environmental control system for the ubiquitous housing environment. In order to build an effective environmental control system that will provide a comfortable, pleasant, and convenient environment for residents, information on how people cognize the indoor and outdoor environmental conditions, information on human beings, and information of the space should be studied. Also more studies need to be done in which method would be the best way to integrate these informations that would affect the users in the most positive way. The current environmental control system only carries the information on providing separate information of environmental factors such as light, temperature, humidity, heat, and sound. However, it is difficult to understand the energy efficiency of an architectural element through this system. Therefore, this study proposes an energy monitoring system utilizing spatial information.

  • PDF

Analyzing the Evolution of Summer Thermal Anomalies in Busan Using Remote Sensing and Spatial Statistical Tool

  • Njungwi, Nkwain Wilfred;Lee, Daeun;Kim, Minji;Jin, Cheonggil;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.665-685
    • /
    • 2021
  • This study focused on the a 20-year evaluation of the dynamism of critical thermal anomalies in Busan metropolitan area prompted by unusual infrastructural development and demographic growth rate. Archived Landsat thermal data derived-LST was the major input for UTFVI and hot spot analysis (Getis-Ord Gi*). Results revealed that the surface urban heat island-affected area has gradually expanded overtime from 23.32% to 32.36%; while the critical positive thermal anomalies (level-3 hotspots) have also spatially increased from 19.88% in 2000 to 23.56% in 2020, recording a net LST difference of > 5℃ between the maximum level-3 hotspot and minimum level-3 coldspot each year. It is been observed that thermal conditions of Busan have gradually deteriorated with time, which is potentially inherent in the rate of urban expansion. Thus, this work serves as an eye-opener to powers that be, to think and act constructively towards a sustainable thermal conform for city dwellers.

Landsat 8-based High Resolution Surface Broadband Albedo Retrieval (Landsat 8 위성 기반 고해상도 지표면 광대역 알베도 산출)

  • Lee, Darae;Seo, Minji;Lee, Kyeong-sang;Choi, Sungwon;sung, Noh-hun;Kim, Honghee;Jin, Donghyun;Kwon, Chaeyoung;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.741-746
    • /
    • 2016
  • Albedo is one of the climate variables that modulate absorption of solar energy, and its retrieval is important process for climate change study. High spatial resolution and long-term consistent periods are important considerations in order to efficiently use the retrieved albedo data. This study retrieved surface broadband albedo based on Landsat 8 as high resolution which is consistent with Landsat 7. First of all, we analyzed consistency of Landsat 7 channel and Landsat 8 channel. As a result, correlation coefficient(R) on all channels is average 0.96. Based on this analysis, we used multiple linear regression model using Landsat 7 albedo, which is being used in many studies, and Landsat 8 reflectance channel data. The regression coefficients of each channel calculated by regression analysis were used to derive a formula for converting the Landsat 8 reflectance channel data to broadband albedo. After Landsat 8 albedo calculated using the derived formula is compared with Landsat 7 albedo data, we confirmed consistency of two satellite using Root Mean Square Error (RMSE), R-square ($R^2$) and bias. As a result, $R^2$ is 0.89 and RMSE is 0.003 between Landsat 7 albedo and Landsat 8 albedo.

Characteristics of Multi-Spatial Resolution Satellite Images for the Extraction of Urban Environmental Information

  • Seo, Dong-Jo;Park, Chong-Hwa;Tateishi, Ryutaro
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.218-224
    • /
    • 1998
  • The coefficients of variation obtained from three typical vegetation indices of eight levels of multi-spatial resolution images in urban areas were employed to identify the optimum spatial resolution in terms of maintaining information quality. These multi-spatial resolution images were prepared by degrading 1 meter simulated, 16 meter ADEOS/AVNIR, and 30 meter Landsat-TM images. Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index (PVI) and Soil Adjusted Ratio Vegetation Index (SARVI) were applied to reduce data redundancy and compare the characteristics of multi-spatial resolution image of vegetation indices. The threshold point on the curve of the coefficient of variation was defined as the optimum resolution level for the analysis with multi-spatial resolution image sets. Also, the results from the image segmentation approach of region growing to extract man-made features were compared with these multi-spatial resolution image sets.

  • PDF

Analysis of net radiative changes and correlation with albedo over Antarctica (남극에서의 위성기반 순복사 장기변화와 알베도 사이의 상관성 분석)

  • Seo, Minji;Lee, Kyeong-sang;Choi, Sungwon;Lee, Darae;Kim, Honghee;Kwon, Chaeyoung;Jin, Donghyun;Lee, Eunkyung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.249-255
    • /
    • 2017
  • Antarctica isimportant area in order to understand climate change. In addition, this area is complex region where indicate warming and cooling trend according to previous studies. Therefore, it is necessary to understand the long-term variability of Antarctic energy budget. Net radiation, one of energy budget factor, is affected by albedo, and albedo cause negative radiative forcing. It is necessary to analyze a relationship between albedo and net radiation in order to analyze relationship between two factors in Antarctic climate changes and ice-albedo feedback. In thisstudy, we calculated net radiation using satellite data and performed an analysis of long-term variability of net radiation over Antarctica. In addition we analyzed correlation between albedo. As a results, net radiation indicates a negative value in land and positive value in ocean during study periods. As an annual changes, oceanic trend indicates an opposed to albedo. Time series pattern of net radiation is symmetrical with albedo. Correlation between the two factors indicate a negative correlation of -0.73 in the land and -0.32 in the ocean.