• Title/Summary/Keyword: Spatial Environmental Information

Search Result 1,267, Processing Time 0.024 seconds

Kriging of Daily PM10 Concentration from the Air Korea Stations Nationwide and the Accuracy Assessment (베리오그램 최적화 기반의 정규크리깅을 이용한 전국 에어코리아 PM10 자료의 일평균 격자지도화 및 내삽정확도 검증)

  • Jeong, Yemin;Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Kim, Geunah;Kang, Jonggu;Lee, Dalgeun;Chung, Euk;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.379-394
    • /
    • 2021
  • Air pollution data in South Korea is provided on a real-time basis by Air Korea stations since 2005. Previous studies have shown the feasibility of gridding air pollution data, but they were confined to a few cities. This paper examines the creation of nationwide gridded maps for PM10 concentration using 333 Air Korea stations with variogram optimization and ordinary kriging. The accuracy of the spatial interpolation was evaluated by various sampling schemes to avoid a too dense or too sparse distribution of the validation points. Using the 114,745 matchups, a four-round blind test was conducted by extracting random validation points for every 365 days in 2019. The overall accuracy was stably high with the MAE of 5.697 ㎍/m3 and the CC of 0.947. Approximately 1,500 cases for high PM10 concentration also showed a result with the MAE of about 12 ㎍/m3 and the CC over 0.87, which means that the proposed method was effective and applicable to various situations. The gridded maps for daily PM10 concentration at the resolution of 0.05° also showed a reasonable spatial distribution, which can be used as an input variable for a gridded prediction of tomorrow's PM10 concentration.

Gridding of Automatic Mountain Meteorology Observation Station (AMOS) Temperature Data Using Optimal Kriging with Lapse Rate Correction (기온감률 보정과 최적크리깅을 이용한 산악기상관측망 기온자료의 우리나라 500미터 격자화)

  • Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.715-727
    • /
    • 2023
  • To provide detailed and appropriate meteorological information in mountainous areas, the Korea Forest Service has established an Automatic Mountain Meteorology Observation Station (AMOS) network in major mountainous regions since 2012, and 464 stations are currently operated. In this study, we proposed an optimal kriging technique with lapse rate correction to produce gridded temperature data suitable for Korean forests using AMOS point observations. First, the outliers of the AMOS temperature data were removed through statistical processing. Then, an optimized theoretical variogram, which best approximates the empirical variogram, was derived to perform the optimal kriging with lapse rate correction. A 500-meter resolution Kriging map for temperature was created to reflect the elevation variations in Korean mountainous terrain. A blind evaluation of the method using a spatially unbiased validation sample showed a correlation coefficient of 0.899 to 0.953 and an error of 0.933 to 1.230℃, indicating a slight accuracy improvement compared to regular kriging without lapse rate correction. However, the critical advantage of the proposed method is that it can appropriately represent the complex terrain of Korean forests, such as local variations in mountainous areas and coastal forests in Gangwon province and topographical differences in Jirisan and Naejangsan and their surrounding forests.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

Geographic Information System and Remote Sensing in Soil Science (GIS와 원격탐사를 활용한 토양학 연구)

  • Hong, Suk-Young;Kim, Yi-Hyun;Choe, Eun-Young;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won;Jung, Kang-Ho;Hyun, Byung-Keun;Ha, Sang-Keun;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.684-695
    • /
    • 2010
  • Geographic information system (GIS) is being increasingly used for decision making, planning and agricultural environment management because of its analytical capacity. GIS and remote sensing have been combined with environmental models for many agricultural applications on monitoring of soils, agricultural water quality, microbial activity, vegetation and aquatic insect distribution. This paper introduce principles, vegetation indices, spatial data structure, spatial analysis of GIS and remote sensing in agricultural applications including terrain analysis, soil erosion, and runoff potential. National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) has a spatial database of agricultural soils, surface and underground water, weeds, aquatic insect, and climate data, and established a web-GIS system providing spatial and temporal variability of agricultural environment information since 2007. GIS-based interactive mapping system would encourage researchers and students to widely utilize spatial information on their studies with regard to agricultural and environmental problem solving combined with other national GIS database. GIS and remote sensing will play an important role to support and make decisions from a national level of conservation and protection to a farm level of management practice in the near future.

Detection technique of Red Tide Using GOCI Level 2 Data (GOCI Level 2 Data를 이용한 적조탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Hwang, Do-Hyun;Yoon, Hong-Joo;Seo, Won-Chan
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.673-679
    • /
    • 2016
  • This study propose a new method to detect Cochlodinium polykrikoides red tide occurring in South Sea of Korea using Water-leaving Radiance data and Absorption Coefficients data of Geostationary Ocean Color Imager (GOCI). C. polykrikoides were analyzed and the irradiance and light emission characteristics of the wavelength range from 412 nm to 555 nm were confirmed. The detection technique proposed in this study detects the red tide occurring in the optically complex South Sea. Based on these results, it can be used for future red tide prevention.

Assessments of the GEMS NO2 Products Using Ground-Based Pandora and In-Situ Instruments over Busan, South Korea

  • Serin Kim;Ukkyo Jeong;Hanlim Lee;Yeonjin Jung;Jae Hwan Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Busan is the 6th largest port city in the world, where nitrogen dioxide (NO2) emissions from transportation and port industries are significant. This study aims to assess the NO2 products of the Geostationary Environment Monitoring Spectrometer (GEMS) over Busan using ground-based instruments (i.e., surface in-situ network and Pandora). The GEMS vertical column densities of NO2 showed reasonable consistency in the spatiotemporal variations, comparable to the previous studies. The GEMS data showed a consistent seasonal trend of NO2 with the Korea Ministry of Environment network and Pandora in 2022, which is higher in winter and lower in summer. These agreements prove the capability of the GEMS data to monitor the air quality in Busan. The correlation coefficient and the mean bias error between the GEMS and Pandora NO2 over Busan in 2022 were 0.53 and 0.023 DU, respectively. The GEMS NO2 data were also positively correlated with the ground-based in-situ network with a correlation coefficient of 0.42. However, due to the significant spatiotemporal variabilities of the NO2, the GEMS footprint size can hardly resolve small-scale variabilities such as the emissions from the road and point sources. In addition, relative biases of the GEMS NO2 retrievals to the Pandora data showed seasonal variabilities, which is attributable to the air mass factor estimation of the GEMS. Further studies with more measurement locations for longer periods of data can better contribute to assessing the GEMS NO2 data. Reliable GEMS data can further help us understand the Asian air quality with the diurnal variabilities.

Accuracy Assessment of Precipitation Products from GPM IMERG and CAPPI Ground Radar over South Korea

  • Imgook Jung;Sungwon Choi;Daeseong Jung;Jongho Woo;Suyoung Sim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.269-274
    • /
    • 2024
  • High-quality precipitation data are crucial for various industries, including disaster prevention. In South Korea, long-term high-quality data are collected through numerous ground observation stations. However, data between these stations are reprocessed into a grid format using interpolation methods, which may not perfectly match actual precipitation. A prime example of real-time observational grid data globally is the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM IMERG) from National Aeronautics and Space Administration (NASA), while in South Korea, ground radar data are more commonly used. GPM and ground radar data exhibit distinct differences due to their respective processing methods. This study aims to analyze the characteristics of GPM and Constant Altitude Plan Position Indicator(CAPPI),representative real-time grid data, by comparing them with ground-observed precipitation data. The study period spans from 2021 to 2022, focusing on hourly data from Automated Synoptic Observing System (ASOS) sites in South Korea. The GPM data tend to underestimate precipitation compared to ASOS data, while CAPPI shows errors in estimating low precipitation amounts. Through this comparative analysis, the study anticipates identifying key considerations for utilizing these data in various applied fields, such as recalculating design rainfall, thereby aiding researchers in improving prediction accuracy by using appropriate data.

Moving Vehicle Detection from Single-pass Worldview-3 Imagery Using Spatial Correlation Map

  • Song, Yongjun;Chung, Minkyung;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.439-448
    • /
    • 2022
  • MV (Moving Vehicle) detection using satellite imagery is important for traffic monitoring and provides a wide range of observations. Specifically, MV detection methods utilizing the time lag in single-pass optical satellite images have been studied for detecting MVs from a single set of images. Because of limitations in detecting MVs outside of roads, most previous studies required road information to limit the moving object to cars on the road. However, it is difficult to obtain road information from inaccessible areas. Therefore, this study proposed a new method for detecting MVs regardless of their locations from single-pass optical satellite images without using additional data. WV-3 (Worldview-3) satellite images were used, and a spatial correlation coefficient map was proposed to detect spatial displacement which denotes MVs across two WV-3 MS images. Finally, evaluation was performed through quantitative metrics and visual inspection. The evaluation results revealed that the proposed method can detect MV movements from the single-pass satellite images. On the contrary, misdetected or undetected MVs due to radiometric differences between the images could be identified by visual inspection. The performance of the proposed method can be improved by minimizing radiometric variations and adding conditions that are robust to radiometric differences between the images.

Development of GIS-based Regional Crime Prevention Index to Support Crime Prevention Activities in Urban Environments

  • Seok, Sang-Muk;Kwon, Hoe-Yun;Song, Ki-Sung;Lee, Ha-Kyung;Hwang, Jung-Rae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 2017
  • In this study, we proposed GIS-based Regional Crime Prevention Index (RCPI) development method designed to support local governments with systematic crime prevention activities. The public interest in safe urban environment is increasing rapidly. The government is putting efforts into crime prevention activities to eliminate the criminal opportunities in advance. CPTED is method to prevent crimes in the city by improving environmental factors that cause crime. It is used by local governments to promote the crime prevention activities centering on the expansion of CCTVs and street lamps and the improvement of street environment. However, most policies were terminated as one-off programs and it is necessary to monitor the effect of such policies on a continuous basis. In order to alleviate issues, this study proposed RCPI as part of crime safety assessment in urban environments. The estimation of RCPI in City A of Gyeonggi-do showed relative differences in 31 districts (dong), indicating that it is also possible to evaluate the crime safety in the local community on the level of the administrative dong, the smallest administrative district in the urban environments. As a crime map, the RCPI will be used effectively as he reference to support the decision making process for local government in the future.

Waterbody Detection for the Reservoirs in South Korea Using Swin Transformer and Sentinel-1 Images (Swin Transformer와 Sentinel-1 영상을 이용한 우리나라 저수지의 수체 탐지)

  • Soyeon Choi;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Yungyo Im;Youngmin Seo;Wanyub Kim;Minha Choi;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.949-965
    • /
    • 2023
  • In this study, we propose a method to monitor the surface area of agricultural reservoirs in South Korea using Sentinel-1 synthetic aperture radar images and the deep learning model, Swin Transformer. Utilizing the Google Earth Engine platform, datasets from 2017 to 2021 were constructed for seven agricultural reservoirs, categorized into 700 K-ton, 900 K-ton, and 1.5 M-ton capacities. For four of the reservoirs, a total of 1,283 images were used for model training through shuffling and 5-fold cross-validation techniques. Upon evaluation, the Swin Transformer Large model, configured with a window size of 12, demonstrated superior semantic segmentation performance, showing an average accuracy of 99.54% and a mean intersection over union (mIoU) of 95.15% for all folds. When the best-performing model was applied to the datasets of the remaining three reservoirsfor validation, it achieved an accuracy of over 99% and mIoU of over 94% for all reservoirs. These results indicate that the Swin Transformer model can effectively monitor the surface area of agricultural reservoirs in South Korea.