• Title/Summary/Keyword: Spatial Drop

Search Result 66, Processing Time 0.029 seconds

An Experimental Study on the Behavior of Twin-Spray with Flow Interaction in a Condensable Environment (주위기체내에서의 두 액체분무간의 유동간섭현상에 대한 정상적 고찰)

  • 이상룡;정태식;한기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.326-334
    • /
    • 1986
  • The effects of flow interaction between adjacent sprays in twin-spray system on the spatial distribution of injected liquid (water) and drop size distribution in condensable (steam) environment were carefully observed through experiments. The spatial distribution of injected liquid in twin-spray system appears to be more uniform than the simple superposition of the spatial distributions of liquid obtained from each individual spray. Drop size distribution was obtained by using the immersion sampling technique. It was found that, in the twin-spray, the larger numbers of small drops are collected throughout the spraying region due to the increase of entrainment velocity of ambient steam compared with the case of simple superposition of each individual spray. Moreover, in the overlapped portion of the twin-spray, the drop size distribution was changed also due to the collision between large drops. As a result, the behavior of twin-spray system (and eventually multiple-spray system) can not be predicted precisely by simple superposition of the behaviors of each constituting spray. Hence, for the design of multiple spray system, the effect of flow interaction between sprays should be taken into account seriously.

A Study on the Radial Spray Performance of a Plaint-Jet Twin-Fluid Nozzle (액주형 이류체노즐의 반경반향 분무특성에 관한 연구)

  • 최진철;노병준;강신재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.662-669
    • /
    • 1994
  • In the combustion system, the optimum spray conditions reduce the pollutant emission of exhaust gas and enhance the fuel efficiency. The spray characteristics-the drop size, the drop velocity, the number density and the mass flux, become increasingly important in the design of combustor and in testifying numerical simulation of spray flow in the combustor. The purposes of this study are to clarify the spray characteristics of twin-fluid nozzle and to offer the data for combustor design and the numerical simulation of a spray flow. Spatial drop diameter was measured by immersion sampling method. The mean diameter, size distribution and uniformity of drop were analyzed with variations of air/liquid mass flow ratio. The results show that the SMD increases with the liquid supply flow rate and decreases with the air supply velocity. The radial distribution of SMD shows the larger drops can diffuse farther to the boundary of spray. And the drop size range is found to be wider close to the spray boundary where the maximum SMD locates.

Spatial Distribution Characteristics of Small LRE-injector's Spray-droplet According to the Variation of Fuel-injection Pressure (소형 액체로켓엔진 인젝터 분무의 연료분사압력 변이에 따른 액적의 공간분포 특성)

  • Jung, Hun;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • Dual-mode Phase Doppler Anemometry (DPDA) was used to scrutinize the spatial distribution characteristics of spray emanating from a small Liquid-Rocket Engine (LRE) injector. Droplet size and velocity were measured according to the variation of injection pressure along the plane normal to the spray stream and then the spray characteristic parameters such as Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), number density, span of drop size distribution, and volume flux were deduced for an investigation of spray breakup characteristics. As the injection pressure increases, the number density, span, and volume flux of spray droplets become higher, whereas the AMD gets smaller.

Change of Spray Characteristics with Mixing Port Length of Y-Jet Atomizers (Y-Jet 노즐에서의 혼합관 길이변화에 따른 분무특성 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3021-3031
    • /
    • 1994
  • Experiments have been performed to find out the effect of the mixing port length of Y-jet atomizers on the spray performance, using air and water as the test fluids. Water and air flow rates and drop sizes were measured at each injection pressure condition for different mixing port length. The air flow rate was almost unaffected by the change of the mixing port length. However, the water flow rate was relatively susceptible to the change of the mixing port length. The mixing point pressure was very much influenced by the mixing port length. Variations of spatial distribution of Sauter Mean Diameter (SMD, $D_{32}$) and the cross-section-averaged SMD ($D_{32,m}$) with different mixing port length and air/water mass flow rate ratio were examined. Generally, when the mixing port length was reduced, the mean drop size decreased and became spatially even.

Spray Characterization of Gas-Centered Swirl Coaxial Injectors Using an Optical Probe

  • Marty, Sylvain;Hong, Moon-Geun;Matas, Jean-Philippe;Cartellier, Alain;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.172-177
    • /
    • 2011
  • In order to investigate spray characteristics of gas-centered swirl coaxial injectors, a phase detection optical probe is employed to obtain the spatial evolution of the drop size and velocity. From the study on the optical probe responses under various impact angles, it is demonstrated that the drop size and velocity can be measured with an uncertainty less than 15% when the probe axis remains within about ${\pm}15^{\circ}$ of the drop velocity direction. This typical uncertainty is in good agreement with a previous study. It is also shown that the drop sizes measured by the optical probe are in accord with those evaluated by image processing techniques. Finally, the experiments with the optical probe are performed in dense sprays, as it were, in the near field of gas-centered swirl coaxial injectors. Some experimental results are presented and discussed to be of help to understanding of spray characteristics of the injectors.

  • PDF

Effect of liquid viscosity on internal flow and spray characteristics of Y-jet atomizers (액체 점도에 따른 Y-jet 노즐 내부 유동 및 분무 특성의 변화)

  • Song, Si-Hong;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4053-4061
    • /
    • 1996
  • Internal flow characteristics within Y-jet atomizers and the local drop size distribution and cross-sectional averaged drop size at the outside were investigated with the liquid and air injection pressures, mixing port length of atomizers, and the liquid properties taken as parameters. To examine the effect of the liquid viscosity, glycerin-water mixtures were used in this study. The liquid viscosity plays only a minor role in determining the internal flow pattern and the spatial distribution shape of drops, but the drop sizes themselves generally increase with increasing of the liquid viscosity. An empirical correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results; the liquid discharge coefficient strongly depends on the liquid flow area at the mixing point which is proportional to the local volumetric quality(.betha.$_{Y}$), and the volumetric quality was included in the correlation. Regardless of the value of the liquid viscosity, the compressible flow through the gas port was well represented by the polytropic expansion process(k=1.2), and the mixing point pressure could be simply correlated to the aspect ratio( $l_{m}$/ $d_{m}$) of the mixing port and the air/liquid mass flow rate ratio( $W_{g}$/ $W_{f}$) as reported in the previous study.udy.udy.y.

A Benchmark Test of Spatial Big Data Processing Tools and a MapReduce Application

  • Nguyen, Minh Hieu;Ju, Sungha;Ma, Jong Won;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.405-414
    • /
    • 2017
  • Spatial data processing often poses challenges due to the unique characteristics of spatial data and this becomes more complex in spatial big data processing. Some tools have been developed and provided to users; however, they are not common for a regular user. This paper presents a benchmark test between two notable tools of spatial big data processing: GIS Tools for Hadoop and SpatialHadoop. At the same time, a MapReduce application is introduced to be used as a baseline to evaluate the effectiveness of two tools and to derive the impact of number of maps/reduces on the performance. By using these tools and New York taxi trajectory data, we perform a spatial data processing related to filtering the drop-off locations within Manhattan area. Thereby, the performance of these tools is observed with respect to increasing of data size and changing number of worker nodes. The results of this study are as follows 1) GIS Tools for Hadoop automatically creates a Quadtree index in each spatial processing. Therefore, the performance is improved significantly. However, users should be familiar with Java to handle this tool conveniently. 2) SpatialHadoop does not automatically create a spatial index for the data. As a result, its performance is much lower than GIS Tool for Hadoop on a same spatial processing. However, SpatialHadoop achieved the best result in terms of performing a range query. 3) The performance of our MapReduce application has increased four times after changing the number of reduces from 1 to 12.

Solution to Decrease Spatial Dose Rate in Laboratory of Nuclear Medicine through System Improvement (시스템 개선을 통한 핵의학 검사실의 공간 선량률 감소방안)

  • Moon, Jae-Seung;Shin, Min-Yong;Ahn, Seong-Cheol;Yoo, Mun-Gon;Kim, Su-Geun
    • Quality Improvement in Health Care
    • /
    • v.20 no.1
    • /
    • pp.60-73
    • /
    • 2014
  • Objectives: This study aims at decreasing spatial dose rate through work improvement whilst spatial dose rate is the cause of increasing personal exposure dose which occurs in the process of handling radioisotope. Methods: From February 2013 until July 2013, divided into "before" and "after" the improvement, spatial dose rate in laboratory of nuclear medicine was measured in gamma image room, PET/CT-1 image room, and PET/CT-2 image room as its locations. The measurement time was 08:00, 12:00 and 17:00, and SPSS 21.0 USA was opted for its statistical analysis. Result: The spatial dose rate at distribution worktable, injection table, the entrance to the distribution room, and radioisotope storage box, which had showed high spatial dose rate, decreased by more than 43.7% a monthly average. The distribution worktable, that had showed the highest spatial dose rate in PET/CT-1 image room, dropped the rate to 42.3% as of July. The injection table and distribution worktable in the PET/CT-2 image room also showed the decline of spatial dose rate to 89% and 64.4%, respectively. Conclusion: By improving distribution process and introducing proper radiation shielding material, we were able to drop the spatial dose rate substantially at distribution worktable, injection table, and nuclide storage box. However, taking into account of steadily increasing amount of radioisotope used, strengthening radiation related regulations, and safe utilization of radioisotope, the process of system improvement needs to be maintained through continuous monitoring.

Load Shedding Method based on Grid Hash to Improve Accuracy of Spatial Sliding Window Aggregate Queries (공간 슬라이딩 윈도우 집계질의의 정확도 향상을 위한 그리드 해쉬 기반의 부하제한 기법)

  • Baek, Sung-Ha;Lee, Dong-Wook;Kim, Gyoung-Bae;Chung, Weon-Il;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.89-98
    • /
    • 2009
  • As data stream is entered into system continuously and the memory space is limited, the data exceeding the memory size cannot be processed. In order to solve the problem, load shedding methods which drop a part of data to prevent exceeding the storage space have been researched. Generally, a traditional load shedding method uses random sampling with optimized rate according to data deviation. The method samples data not to distinguish those used in spatial query because the method uses only a random sampling with optimized rate according to data deviation. Therefore, the accuracy of query was reduced in u-GIS environment including spatial query. In this paper, we researched a new load shedding method improving accuracy of the query in u-GIS environment which runs spatial query and aspatial query simultaneously. The method uses a new sampling method that samples data having low probability used in query. Therefore proposed method improves spatial query accuracy and query processing speed as applying spatial filtering operation to sampling operator.

  • PDF

Analysing Spatial Usage Characteristics of Shared E-scooter: Focused on Spatial Autocorrelation Modeling (공유 전동킥보드의 공간적 이용특성 분석: 공간자기상관모형을 중심으로)

  • Kim, Sujae;Koack, Minjung;Choo, Sangho;Kim, Sanghun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.54-69
    • /
    • 2021
  • Policy improvement such as the revision of the Road Traffic Act are proposed for personal mobility(especially e-scooter) usage. However, there is not enough discussion to solve the problem of using shared e-scooter. In this study, we analyze the influencing factors that amount of pick-up and drop-off of shared e-scooter by dividing the Seoul into a 200m grid. we develop spatial auotcorrelation model such as spatial lag model, spatial error model, spatial durbin model, and spatial durbin error model in order to consider the characteristics of the aggregated data based on a specific space, and the spatial durbin error model is selected as the final model. As a result, demographic factor, land use factor, and transport facility factors have statistically significant impacts on usage of shared e-scooter. The result of this study will be used as basic data for suggesting efficient operation strategies considering the characteristics of weekday and weekend.