• Title/Summary/Keyword: Spatial Detection

Search Result 1,210, Processing Time 0.031 seconds

Spatial spectrum approach for pilot spoofing attack detection in MIMO systems

  • Ning, Lina;Li, Bin;Wang, Xiang;Liu, Xiaoming;Zhao, Chenglin
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.941-949
    • /
    • 2021
  • In this study, a spatial spectrum method is proposed to cope with the pilot spoofing attack (PSA) problem by exploiting the of uplink-downlink channel reciprocity in time-division-duplex multiple-input multiple-output systems. First, the spoofing attack in the uplink stage is detected by a threshold derived from the predefined false alarm based on the estimated spatial spectrum. When the PSA occurs, the transmitter (That is Alice) can detect either one or two spatial spectrum peaks. Then, the legitimate user (That is Bob) and Eve are recognized in the downlink stage via the channel reciprocity property based on the difference between the spatial spectra if PSA occurs. This way, the presence of Eve and the direction of arrival of Eve and Bob can be identified at the transmitter end. Because noise is suppressed by a spatial spectrum, the detection performance is reliable even for low signal-noise ratios and a short training length. Consequently, Bob can use beamforming to transmit secure information during the data transmission stage. Theoretical analysis and numerical simulations are performed to evaluate the performance of the proposed scheme compared with conventional methods.

Urban spatial structure change detection in land cover map using time-series patch mapping (시계열 패치 매핑을 이용한 토지피복도의 도시공간구조 변화 검출)

  • Lee, Young-Chang;Lee, Kyoung-Mi;Chon, Jinhyung
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1727-1737
    • /
    • 2018
  • In this paper, we propose a system to detect spatial structures in land cover maps and to detect time-series spatial structure changes. At first, the proposed system detects patches in a certain area at different times and calculates their measures to analyse spatial structure patterns of the area. Then the system conducts patch mapping among the detected time-series patches and decides 6 types of patch changes such as keeping, creating, disappearing, splitting, merging, and changing in a mixed way. Also, the system stores the patch-based spatial structure patterns of time-series land cover maps in binary form to extract changes. This demonstrated that the proposed change detection system can be used as a basis for planning the reconstruction of the urban spatial structure by measuring the degree of urban sprawl.

Accurate Spatial Information Mapping System Using MMS LiDAR Data (MMS LiDAR 자료 기반 정밀 공간 정보 매핑 시스템)

  • CHOUNG, Yun-Jae;CHOI, Hyeoung-Wook;PARK, Hyeon-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Mapping accurate spatial information is important for constructing three-dimensional (3D) spatial models and managing artificial facilities, and, especially, mapping road centerlines is necessary for constructing accurate road maps. This research developed a semi-automatic methodology for mapping road centerlines using the MMS(Mobile Mapping System) LiDAR(Light Detection And Ranging) point cloud as follows. First, the intensity image was generated from the given MMS LiDAR data through the interpolation method. Next, the line segments were extracted from the intensity image through the edge detection technique. Finally, the road centerline segments were manually selected among the extracted line segments. The statistical results showed that the generated road centerlines had 0.065 m overall accuracy but had some errors in the areas near road signs.

Low-Complexity Robust ML Signal Detection for Generalized Spatial Modulation (일반화 공간변조를 위한 저복잡도 강인 최대 우도 신호 검파)

  • Kim, Jeong-Han;Yoon, Tae-Seon;Oh, Se-Hoon;Lee, Kyungchun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.516-522
    • /
    • 2017
  • In this paper, we propose a maximum likelihood signal detection scheme for a generalized spatial modulation system that activates only a subset of transmit antennas among multiple antennas and transmits information through the indexes of active antennas as well as through the transmit symbols. The proposed maximum likelihood receiver extracts a set of candidate solutions based on their a posteriori probabilities to lower the computational load of the robust receiver under channel information errors. Then, the chosen candidate solutions are exploited to estimate the covariance matrix of effective noise. Simulation results show that the proposed maximum likelihood detection scheme achieves better error performance than a receiver that does not take into account the channel information errors. It is also seen that it reduces the computational complexity with the same bit error rate performance as the conventional robust maximum likelihood receiver.

Spatial and Directional Sensation Prosthesis for the Blind (시각장애인을 위한 공간 및 방향감각 보조시스템)

  • 노세현;박우찬;신현철;김상호;김영곤;김광년;정동근
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.145-150
    • /
    • 2004
  • In this study for the prosthesis of the spatial and directional sensation for the blind, an ultrasonic scale system and an electronic compass system were developed. The ultrasonic scale utilizes 40 ㎑ sound for the detection of distance to the barrier and the spatial information is transferred to the blind by various sound interval, which is proportional to the distance. The electronic compass utilizes a magnetoresistor bridge for the detection of the magnetic field strength of earth in horizontal plane. The information for the direction of the earth's north is transferred by tactile stimuli by a vibrating motor band around upper head. Detection distance of the ultrasonic scale is ranged from 0.065 to 3.26 meters, and the detection angle resolution of the electronic compass is about 22.5 degrees. The integrated system of the ultrasonic scale and the electronic compass was developed. Distance information is converted to the location of the tactile stimulation along the clockwise direction by a vibrating motor according to the distance installed around upper head of the blind. The intent of this article is to provide an practical prosthetic tool of spatial and directional sensation for the blind. Daily practice of this system will improve the usefulness of this system.

Unsupervised Change Detection for Very High-spatial Resolution Satellite Imagery by Using Object-based IR-MAD Algorithm (객체 기반의 IR-MAD 기법을 활용한 고해상도 위성영상의 무감독 변화탐지)

  • Jaewan, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • The change detection algorithms, based on remotely sensed satellite imagery, can be applied to various applications, such as the hazard/disaster analysis and the land monitoring. However, unchanged areas sometimes detected as the changed areas due to various errors in relief displacements and noise pixels, included in the original multi-temporal dataset at the application of unsupervised change detection algorithm. In this research, the object-based changed detection for the high-spatial resolution satellite images is applied by using the IR-MAD (Iteratively Reweighted- Multivariate Alteration Detection), which is one of those representative change detection algorithms. In additionally, we tried to increase the accuracy of change detection results with using the additional information, based on the cross-sharpening method. In the experiment, we used the KOMPSAT-2 satellite sensor, and resulted in the object-based IR-MAD algorithm, representing higher changed detection accuracy than that by the pixel-based IR-MAD. Also, the object-based IR-MAD, focused on cross-sharpened images, increased in accuracy of changed detection, compared to the original object-based IR-MAD. Through these experiments, we could conclude that the land monitoring and the change detection with the high-spatial-resolution satellite imagery can be accomplished efficiency by using the object-based IR-MAD algorithm.

Spatial Compare Filter Based Real-Time dead Pixel Correction Method for Infrared Camera

  • Moon, Kil-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose a new real-time dead pixel detection method based on spatial compare filtering, which are usually used in the small target detection. Actually, the soft dead and the small target are cast in the same mold. Our proposed method detect and remove the dead pixels as applying the spatial compare filtering, into the pixel outputs of a detector after the non-uniformity correction. Therefore, we proposed method can effectively detect and replace the dead pixels regardless of the non-uniformity correction performance. In infrared camera, there are usually many dead detector pixels which produce abnormal output caused by manufactural process or operational environment. There are two kind of dead pixel. one is hard dead pixel which electronically generate abnormal outputs and other is soft dead pixel which changed and generated abnormal outputs by the planning process. Infrared camera have to perform non-uniformity correction because of structural and material properties of infrared detector. The hard dead pixels whose offset values obtained by non-uniformity correction are much larger or smaller than the average can be detected easily as dead pixels. However, some dead pixels(soft dead pixel) can remain, because of the difficulty of uncleared decision whether normal pixel or abnormal pixel.

Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources (다종 감마선 공간분포 측정을 위한 고감도 검출센서 및 탐지모듈 개발)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.705-707
    • /
    • 2017
  • Stereo-based spatial radiation detection devices can obtain not only spatial distribution information about the radiation source but also distance information from the detection device to the source. And it provides more efficient information on the source than the existing radiation imaging device. In order to provide high-speed information on the spectrum and type of gamma-ray source, a high-sensitivity detection sensor with high sensitivity is required, and a technique capable of solving the saturation phenomenon at a high dose is needed. In this paper, we constructed a high sensitivity sensor for the measurement of multiple gamma - ray spatial distributions using improved function of detection module to solve saturation to high dose and conducted research to increase the scope of a single detector. The result of this paper improves the performance of gamma ray.

  • PDF

Rapid Defect Inspection of Display Device with Optical Spatial Filtering

  • Yoon, Dong-Seon;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.56-61
    • /
    • 2000
  • We present a fast inspection method of machine vision for in-line quality assurance of liquid crystal displays(LCD) and plasma display panels(PDP). The method incorporates an optical spatial filter in the Fourier plane of the imaging optics to block the normal periodic pattern, extracting only defects real time without relying on intensive software image process. Special emphasis is on designing a collimated white light source to provide high degree of spatial coherence for effective real time Fourier transform. At the same time, a low level of temporal coherence is attained to improve defect detection capabilities by avoiding undesirable coherent noises. Experimental results show that the proposed inspection method offers a detection accuracy of 15% tolerance, which is sufficient for industrial applications.

  • PDF

Comparison of Multivariate CUSUM Charts Based on Identification Accuracy for Spatio-temporal Surveillance (시공간 탐지 정확성을 고려한 다변량 누적합 관리도의 비교)

  • Lee, Mi Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.521-532
    • /
    • 2015
  • Purpose: The purpose of this study is to compare two multivariate cumulative sum (MCUSUM) charts designed for spatio-temporal surveillance in terms of not only temporal detection performance but also spatial detection performance. Method: Experiments under various configurations are designed and performed to test two CUSUM charts, namely SMCUSUM and RMCUSUM. In addition to average run length(ARL), two measures of spatial identification accuracy are reported and compared. Results: The RMCUSUM chart provides higher level of spatial identification accuracy while two charts show comparable performance in terms of ARL. Conclusion: The RMCUSUM chart has more flexibility, robustness, and spatial identification accuracy when compared to those of the SMCUSUM chart. We recommend to use the RMCUSUM chart if control limit calibration is not an urgent task.