• Title/Summary/Keyword: Spathiphyllum spp.

Search Result 8, Processing Time 0.022 seconds

Identification of a New Potyvirus Associated with Chlorotic Vein Banding Disease of Spathiphyllum spp., in Andhra Pradesh, India

  • Padmavathi, M.;Srinivas, K.P.;Reddy, Ch. V. Subba;Ramesh, B.;Navodayam, K.;Krishnaprasadji, J.;Babu, P. Ratan;Sreenivasulu, P.
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.33-36
    • /
    • 2011
  • The genome of a potyvirus isolate associated with chlorotic spots and vein banding symptoms on Spathiphyllum spp., in Andhra Pradesh state, India was amplified by RT-PCR using degenerate potyvirus primers, amplicons cloned, and sequence (1.6 kb) analyzed. This virus isolate shared maximum identity of 74.8% and 80.2% at coat protein (CP) gene nucleotide (906 nucleotides) and amino acid (302 amino acids) levels, respectively with Dasheen mosaic virus (DsMV)-M13 isolate reported from China. But its 3'-UTR (258 nucleotides) had maximum identity of 62.5% with DsMV-Vietnam isolate. The deduced molecular weight of CP is 33.57 kDa and it contained DAG triplet in its N-terminal region. In CP amino acid based phylogenetic analysis, this virus isolate represented a separate branch but closer to DsMV isolates cluster. Based on the molecular criteria set for the discrimination of species and genus in the Potyviridae family, the present virus isolate was identified as a distinct virus species in the genus Potyvirus and proposed the name Spathiphyllum chlorotic vein banding virus (SCVbV).

Particulate Matter Removal of Indoor Plants, Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. according to Light Intensity (광량에 따른 실내식물 디펜바키아와 스파티필럼의 미세먼지 제거능)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.62-68
    • /
    • 2018
  • This study investigated the effect of light intensity on the removal of particulate matter by Dieffenbachia amoena 'Marianne' and Spathiphyllum spp.. An acrylic chamber ($600{\times}800{\times}1200mm$, $L{\times}W{\times}H$) modeled as an indoor space and a green bio-filter ($495{\times}495{\times}1000mm$, $L{\times}W{\times}H$) as an air purification device were made of acrylic. The removal of particulate matter PM10 and PM1, the photosynthetic rate, stomatal conductance, and number of stomata of Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. were measured according to three different levels of light intensity (0, 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$). Regarding the length of time taken for PM10 to reach $1{\mu}g$, the Dieffenbachia amoena 'Marianne' showed a significant difference according to the presence or absence of light, and there was no significant difference shown between light intensity of 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. As for the Spathiphyllum spp., there was no significant difference between 0 and $30{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$, while a significant difference was shown at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. After 90 minutes, the PM1, PM10, and $CO_2$ residuals of the Spathiphyllum spp. were lowest at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. The remaining amount of PM1 and PM10 was lower with the Spathiphyllum spp. than with the Dieffenbachia amoena 'Marianne', even at $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. With both plants, the higher the light intensity, the higher the photosynthetic rate, while the stomatal conductance did not show any significant difference. Spathiphyllum spp. showed a higher photosynthetic rate and stomatal conductance and a greater number of stomata than Dieffenbachia amoena 'Marianne', and stomata were observed in both the front and back sides of the leaves. The air purification effect of Spathiphyllum spp. is considered to be better than Dieffenbachia amoena 'Marianne' at the same light intensity due to such plant characteristics. Therefore, in order to select effective indoor plants for the removal of particulate contamination in an indoor space, the characteristics of plants such as the photosynthetic rate and the number and arrangement of stomata according to indoor light intensity should be considered.

Petiole and Root Rot on Spathiphyllum Caused by Cylindrocladium spathiphylli in Korea (Cylindrocladium spathiphylli에 의한 스파티필럼 뿌리썩음병)

  • Han, Kyung-Sook;Park, Jong-Han;Han, You-Kyoung;Cheong, Seung-Ryong
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.64-67
    • /
    • 2008
  • In 2005 and 2007, petiole and root rot of Spathiphyllum spp. was occurred at commercial greenhouse during summer (June-September) in Koyang city and Yongin city, Kyunggi-do, Korea. The pathogenic fungus was isolated from diseased plants and the cultural and morphological chracteristic were observed. Conidia were rod in shape, 1-3 septa and $67.5-95.0{\times}4.8-6.5\;{\mu}m$ (av. $82.0{\times}6.0\;{\mu}m$) in size. The optimum temperature for the mycelial growth of the isolates was $27^{\circ}C$. According to result the pathogenicity test, first disease symptoms appeared five days after inoculation. On the basis of mycological characteristics and pathogenicity test on host plants, the fungus was identified as Cylindrocladium spathiphylli. This is the first report on Spathiphyllum spp. caused by C spathiphylli in Korea.

Growth Responses of Various Ornamental Foliage Plants According to the Amount of Nitrogen Application (질소처리에 따른 여러 관엽식물의 생육반응)

  • Shim, Myung Syun;Kil, Mi Jung
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.485-490
    • /
    • 2012
  • This study was carried out to investigate the plant growth of various foliage plants affected by the amount of nitrogen application. There was not an accurate criterion for fertilization to each foliage plant. Moreover, the foliage plants grow slowly during the early stage and this period must be shortened for commercial production. Ficus benjamina, Hedera helix, Philodendron tatei, Rhapis excelsa, and Spathiphyllum spp. were used in this experiment. Nutrient nitrogen concentrations were 120, 150, 180, and $210mg{\cdot}L^{-1}$ (N1, N2, N3, N4) and they were based on the Sonneveld solution. Plant height and width, leaf number, leaf area, fresh and dry weights of shoots were measured for 8 weeks to compare the responses to the different treatments. The nitrogen contents of various plant parts were also analyzed. The growth of Ficus and Hedera was improved at the N1 treatment and that of Philodendron, Rhapis and Spathiphyllum at N4 treatment. The required amounts for nitrogen nutrients were different among the various foliage plants. The nitrogen treatments had no effects on SPAD values and there were no correlations between nitrogen treatments and nitrogen contents of plant parts. Therefore, the various foliage plants should supply with each proper nitrogen treatments to grow faster with better quality. In this case, the plant growth played a more important role than nitrogen levels of plant parts in deciding the proper nitrogen levels for each foliage plant.

Growth and Physiological Characteristics of Five Common Foliage Plant Species Grown under the Influence of Static Magnetic Field (정자기장 처리에 따른 실내 관엽식물의 생육 및 생리적 특성 변화)

  • Lee, Seong Han;Woo, Su Young;Kwak, Myung Ja
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The present study aimed to investigate the effect of static magnetic field (SMF) on the growth and physiological characteristics of common indoor plant species. Five foliage plant species, Spathiphyllum spp., Ardisia pusilla DC., Syngonium podophyllum, Peperomia pereskiifolia, and Pilea cadierei were potted into plastic pot equipped with round type anisotropic sintered NdFeB permanent magnet inside the pot. The surface magnetic flux density of each magnet was 3,500 G. After 6 months of growth period, the biomass accumulations of Spathiphyllum, A. pusilla, and P. cadierei under SMF were statistically higher than those of controls. Tissue water content also increased under the influence of SMF in most species. The photosynthetic rate of Spathiphyllum under SMF significantly increased but other species showed no significant difference compared with control. Although there was no significant increase in the photosynthetic rates of A. pusilla, and P. cadierei, they showed remarkable increase in total fresh weight under SMF. This suggests that the demand of assimilates for normal metabolism could be decreased under magnetic influence and thereby biomass accumulation could be more favored. But this is not always true for all plant species because P. pereskiifolia in this experiment, showed no changes in both photosynthetic rate and biomass accumulation. Leaf nitrogen and chlorophyll contents were enhanced significantly in most plant species under influence of SMF. Chlorophyll a/b ratio also increased by SMF. Although there might be a limitation depending on plant species, these results suggest that long-term exposure to SMF might allow plant to have an enhanced acclimation capacity against environmental fluctuations and optimal application of SMF could increase the practical use of indoor plants such as an attempt to improve indoor air quality.

Growth Responses of Various Ornamental Foliage Plants to Nutrient Solution Strength (양액농도에 따른 관엽식물의 생육반응)

  • Shim, Myung-Syun;Kwon, Oh-Keun
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.210-216
    • /
    • 2010
  • This study was carried out to investigate the plant growth of various foliage plants affected by the nutrient solution strength. Ficus benjamina, Hedera helix, Philodendron tatei, Rhapis excelsa, Spathiphyllum spp. were used in this experiment. The Sonneveld solution was diluted to 0, 1/4, 1/2, and 1 folds and applied through a subirrigation system. Plant height and width, leaf number, leaf area, fresh and dry weights of shoots were measured to compare the responses to the different treatments. The required amounts for nutrients were different among the various foliage plants. The growth of Ficus and Philodendron was improved as the nutrient solution strength got higher, but that of Hedera and Spathiphyllum showed the best growth in the lower nutrient solution strength of 1/4 and 1/2 folds. The growth of Rhapis was improved in the nutrient solution strength of 1 fold but the other treatments did not affect on plant growth. N, P, and K were the most important nutrients that had influence on the growth of the foliage plants in this study. There was not an accurate criterion for fertilization and irrigation to each foliage plant. Moreover, the foliage plants grew slowly during the early stage and this period must be shortened for commercial production. Therefore, the experiment was executed to make up these defects. The plants applied with proper strength of Sonneveld solution grew faster and had better quality.

Studies on Effects of Interior Plantscaping as Related to the Air Ions (공기이온으로 본 실내녹화 효과에 관한 연구)

  • Kim, Tae-Soon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.1-8
    • /
    • 2003
  • This study was carried out in order to investigate of effects of environmental conditions which influence negative ions development. Negative ions are nature' most powerful air-cleaning agents, are created by nature, and found at their most optimal levels where the air is most pure and healthy. Negative ions are regarded as one of the important factors which indicate the quality of the air. Therefore, the focus of this study was to clear relationship among negative ions development induced by plant cultivar and environmental conditions such as air temperature, light intensity and relative humidity. As the results of this study, it was found that negative ions development was promoted during the period with plants compared to the period without plants. In Particular, negative ions development was high under air temperature $20^{\circ}C$, relative humidity 90% and dark condition. Temperature and humidity factors on this experiment was strongly affected on negative ions development, but light intensity had almost slight effect. It was shown that these results can contribute to the application of environmental control techniques to negative ions. Among plant cultivar of Spathiphyllum spp. Mentha spicata, and Cupressu arizonica, Mentha spicata was higher negative ions than the other plants, and also the leaves were higher than the stems and roots. The effect of plants on the perception of the inte끼r air quality may, therefore, be one explanation of this results about negative ions. on the other hand, it seems that a green indoor environment might be an increase in general well-being due to the plants.

Effects of Indoor Greening Method on Temperature, Relative Humidity and Particulate Matter Concentration (실내녹화 방법이 온·습도 및 미세먼지 농도에 미치는 영향)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.1-10
    • /
    • 2017
  • This study investigated indoor temperature and humidity control and PM1 and PM10 mitigation effects of a single green wall (Case 1), two green walls (Case 2), and two green walls plus a waterfall (Case 3) in comparison with a control without either a green wall or waterfall. Experiments were conducted in the office of Chungbuk National University from August to September, 2015. Experiments were carried out sequentially in the order of control, Case 1, Case 2, and Case 3. Data collected from August 17 to August 20, 2015 (Experiment 1), and from August 31 to September 3, 2015 (Experiment 2), when outdoor temperature was relatively constant, were analyzed. Plant volume ratios by indoor landscaping of the control, Case 1, Case 2 and Case 3 were 0.0, 0.6, 1.2, and 1.4%, respectively. Compared to the control, average temperatures of Case 1, Case 2 and Case 3 were decreased by 0.3~0.7, 0.7~0.9 and $1.0^{\circ}C$, respectively, and relative humidity was increased by 1.8~8.7, 9.2~14.6 and 14.8~21.9%, respectively. Three hundred minutes after exposure to mosquito repellent incense particles, the ratio of the remaining PM1 of the control, Case 1, Case 2 and Case 3 were 25.0, 22.0%, 21.2%, 17.3%, respectively, in Experiment 1 and 42.3, 28.9, 23.1, and 30.9%, respectively, in Experiment 2. As indoor greening increased the effect of indoor temperature, PM1 and PM10 mitigation were greater, and temperature and humidity were lower. The greater the relative humidity was, the faster PM1 and PM10 mitigation tended to be.