• Title/Summary/Keyword: Sparsity of a histogram

Search Result 4, Processing Time 0.021 seconds

Automatic Contrast Enhancement by Transfer Function Modification

  • Bae, Tae Wuk;Ahn, Sang Ho;Altunbasak, Yucel
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2017
  • In this study, we propose an automatic contrast enhancement method based on transfer function modification (TFM) by histogram equalization. Previous histogram-based global contrast enhancement techniques employ histogram modification, whereas we propose a direct TFM technique that considers the mean brightness of an image during contrast enhancement. The mean point shifting method using a transfer function is proposed to preserve the mean brightness of an image. In addition, the linearization of transfer function technique, which has a histogram flattening effect, is designed to reduce visual artifacts. An attenuation factor is automatically determined using the maximum value of the probability density function in an image to control its rate of contrast. A new quantitative measurement method called sparsity of a histogram is proposed to obtain a better objective comparison relative to previous global contrast enhancement methods. According to our experimental results, we demonstrated the performance of our proposed method based on generalized measures and the newly proposed measurement.

Chaotic Features for Dynamic Textures Recognition with Group Sparsity Representation

  • Luo, Xinbin;Fu, Shan;Wang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4556-4572
    • /
    • 2015
  • Dynamic texture (DT) recognition is a challenging problem in numerous applications. In this study, we propose a new algorithm for DT recognition based on group sparsity structure in conjunction with chaotic feature vector. Bag-of-words model is used to represent each video as a histogram of the chaotic feature vector, which is proposed to capture self-similarity property of the pixel intensity series. The recognition problem is then cast to a group sparsity model, which can be efficiently optimized through alternating direction method of multiplier algorithm. Experimental results show that the proposed method exhibited the best performance among several well-known DT modeling techniques.

Dense Sub-Cube Extraction Algorithm for a Multidimensional Large Sparse Data Cube (다차원 대용량 저밀도 데이타 큐브에 대한 고밀도 서브 큐브 추출 알고리즘)

  • Lee Seok-Lyong;Chun Seok-Ju;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.353-362
    • /
    • 2006
  • A data warehouse is a data repository that enables users to store large volume of data and to analyze it effectively. In this research, we investigate an algorithm to establish a multidimensional data cube which is a powerful analysis tool for the contents of data warehouses and databases. There exists an inevitable retrieval overhead in a multidimensional data cube due to the sparsity of the cube. In this paper, we propose a dense sub-cube extraction algorithm that identifies dense regions from a large sparse data cube and constructs the sub-cubes based on the dense regions found. It reduces the retrieval overhead remarkably by retrieving those small dense sub-cubes instead of scanning a large sparse cube. The algorithm utilizes the bitmap and histogram based techniques to extract dense sub-cubes from the data cube, and its effectiveness is demonstrated via an experiment.

Object Tracking with Sparse Representation based on HOG and LBP Features

  • Boragule, Abhijeet;Yeo, JungYeon;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.11 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Visual object tracking is a fundamental problem in the field of computer vision, as it needs a proper model to account for drastic appearance changes that are caused by shape, textural, and illumination variations. In this paper, we propose a feature-based visual-object-tracking method with a sparse representation. Generally, most appearance-based models use the gray-scale pixel values of the input image, but this might be insufficient for a description of the target object under a variety of conditions. To obtain the proper information regarding the target object, the following combination of features has been exploited as a corresponding representation: First, the features of the target templates are extracted by using the HOG (histogram of gradient) and LBPs (local binary patterns); secondly, a feature-based sparsity is attained by solving the minimization problems, whereby the target object is represented by the selection of the minimum reconstruction error. The strengths of both features are exploited to enhance the overall performance of the tracker; furthermore, the proposed method is integrated with the particle-filter framework and achieves a promising result in terms of challenging tracking videos.