• Title/Summary/Keyword: Sparsity

Search Result 329, Processing Time 0.031 seconds

Sparsity-constrained Extended Kalman Filter concept for damage localization and identification in mechanical structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter;Loffeld, Otmar
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.741-749
    • /
    • 2018
  • Structural health monitoring (SHM) systems are necessary to achieve smart predictive maintenance and repair planning as well as they lead to a safe operation of mechanical structures. In the context of vibration-based SHM the measured structural responses are employed to draw conclusions about the structural integrity. This usually leads to a mathematically illposed inverse problem which needs regularization. The restriction of the solution set of this inverse problem by using prior information about the damage properties is advisable to obtain meaningful solutions. Compared to the undamaged state typically only a few local stiffness changes occur while the other areas remain unchanged. This change can be described by a sparse damage parameter vector. Such a sparse vector can be identified by employing $L_1$-regularization techniques. This paper presents a novel framework for damage parameter identification by combining sparse solution techniques with an Extended Kalman Filter. In order to ensure sparsity of the damage parameter vector the measurement equation is expanded by an additional nonlinear $L_1$-minimizing observation. This fictive measurement equation accomplishes stability of the Extended Kalman Filter and leads to a sparse estimation. For verification, a proof-of-concept example on a quadratic aluminum plate is presented.

Performance Improvement of a Movie Recommendation System based on Personal Propensity and Secure Collaborative Filtering

  • Jeong, Woon-Hae;Kim, Se-Jun;Park, Doo-Soon;Kwak, Jin
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.157-172
    • /
    • 2013
  • There are many recommendation systems available to provide users with personalized services. Among them, the most frequently used in electronic commerce is 'collaborative filtering', which is a technique that provides a process of filtering customer information for the preparation of profiles and making recommendations of products that are expected to be preferred by other users, based on such information profiles. Collaborative filtering systems, however, have in their nature both technical issues such as sparsity, scalability, and transparency, as well as security issues in the collection of the information that becomes the basis for preparation of the profiles. In this paper, we suggest a movie recommendation system, based on the selection of optimal personal propensity variables and the utilization of a secure collaborating filtering system, in order to provide a solution to such sparsity and scalability issues. At the same time, we adopt 'push attack' principles to deal with the security vulnerability of collaborative filtering systems. Furthermore, we assess the system's applicability by using the open database MovieLens, and present a personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the selection of optimal personalization factors and the embodiment of a safe collaborative filtering system.

Analysis of Data Imputation in Recommender Systems (추천 시스템에서의 데이터 임퓨테이션 분석)

  • Lee, Youngnam;Kim, Sang-Wook
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1333-1337
    • /
    • 2017
  • Recommender systems (RS) that predict a set of items a target user is likely to prefer have been extensively studied in academia and have been aggressively implemented by many companies such as Google, Netflix, eBay, and Amazon. Data imputation alleviates the data sparsity problem occurring in recommender systems by inferring missing ratings and adding them to the original data. In this paper, we point out the drawbacks of existing approaches and make suggestions for data imputation techniques. We also justify our suggestions through extensive experiments.

The sparse vector autoregressive model for PM10 in Korea (희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석)

  • Lee, Wonseok;Baek, Changryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.807-817
    • /
    • 2014
  • This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.

Tunable Q-factor 2-D Discrete Wavelet Transformation Filter Design And Performance Analysis (Q인자 조절 가능 2차원 이산 웨이브렛 변환 필터의 설계와 성능분석)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • The general wavelet transform has profitable property in non-stationary signal analysis specially. The tunable Q-factor wavelet transform is a fully-discrete wavelet transform for which the Q-factor Q and the asymptotic redundancy r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The transform is based on a real valued scaling factor and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its over-sampling rate, with modest over-sampling rates being sufficient for the analysis/synthesis functions to be well localized. This paper describes filter design of 2D discrete-time wavelet transform for which the Q-factor is easily specified. With the advantage of this transform, perfect reconstruction filter design and implementation for performance improvement are focused in this paper. Hence, the 2D transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. Therefore, application for performance improvement in multimedia communication field was evaluated.

Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation (Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

Adaptive lasso in sparse vector autoregressive models (Adaptive lasso를 이용한 희박벡터자기회귀모형에서의 변수 선택)

  • Lee, Sl Gi;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper considers variable selection in the sparse vector autoregressive (sVAR) model where sparsity comes from setting small coefficients to exact zeros. In the estimation perspective, Davis et al. (2015) showed that the lasso type of regularization method is successful because it provides a simultaneous variable selection and parameter estimation even for time series data. However, their simulations study reports that the regular lasso overestimates the number of non-zero coefficients, hence its finite sample performance needs improvements. In this article, we show that the adaptive lasso significantly improves the performance where the adaptive lasso finds the sparsity patterns superior to the regular lasso. Some tuning parameter selections in the adaptive lasso are also discussed from the simulations study.

Block Sparse Low-rank Matrix Decomposition based Visual Defect Inspection of Rail Track Surfaces

  • Zhang, Linna;Chen, Shiming;Cen, Yigang;Cen, Yi;Wang, Hengyou;Zeng, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6043-6062
    • /
    • 2019
  • Low-rank matrix decomposition has shown its capability in many applications such as image in-painting, de-noising, background reconstruction and defect detection etc. In this paper, we consider the texture background of rail track images and the sparse foreground of the defects to construct a low-rank matrix decomposition model with block sparsity for defect inspection of rail tracks, which jointly minimizes the nuclear norm and the 2-1 norm. Similar to ADM, an alternative method is proposed in this study to solve the optimization problem. After image decomposition, the defect areas in the resulting low-rank image will form dark stripes that horizontally cross the entire image, indicating the preciselocations of the defects. Finally, a two-stage defect extraction method is proposed to locate the defect areas. The experimental results of the two datasets show that our algorithm achieved better performance compared with other methods.

Compressive Sensing-Based L1-SVD DOA Estimation (압축센싱기법 기반 L1-SVD 도래각 추정)

  • Cho, Yunseong;Paik, Ji-Woong;Lee, Joon-Ho;Ko, Yo Han;Cho, Sung-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.388-394
    • /
    • 2016
  • There have been many studies on the direction-of-arrival(DOA) estimation algorithm using antenna arrays. Beamforming, Capon's method, maximum likelihood, MUSIC algorithms are the main algorithms for the DOA estimation. Recently, compressive sensing-based DOA estimation algorithm exploiting the sparsity of the incident signals has attracted much attention in the signal processing community. In this paper, the performance of the L1-SVD algorithm, which is based on fitting of the data matrix, is compared with that of the MUSIC algorithm.

Stagewise Weak Orthogonal Matching Pursuit Algorithm Based on Adaptive Weak Threshold and Arithmetic Mean

  • Zhao, Liquan;Ma, Ke
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1343-1358
    • /
    • 2020
  • In the stagewise arithmetic orthogonal matching pursuit algorithm, the weak threshold used in sparsity estimation is determined via maximum iterations. Different maximum iterations correspond to different thresholds and affect the performance of the algorithm. To solve this problem, we propose an improved variable weak threshold based on the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the residual error value to control the weak threshold. When the residual value decreases, the threshold value continuously increases, so that the atoms contained in the atomic set are closer to the real sparsity value, making it possible to improve the reconstruction accuracy. In addition, we improved the generalized Jaccard coefficient in order to replace the inner product method that is used in the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the covariance to replace the joint expectation for two variables based on the generalized Jaccard coefficient. The improved generalized Jaccard coefficient can be used to generate a more accurate calculation of the correlation between the measurement matrixes. In addition, the residual is more accurate, which can reduce the possibility of selecting the wrong atoms. We demonstrate using simulations that the proposed algorithm produces a better reconstruction result in the reconstruction of a one-dimensional signal and two-dimensional image signal.