• Title/Summary/Keyword: Sparsity

Search Result 334, Processing Time 0.026 seconds

Support Vector Quantile Regression Using Asymmetric e-Insensitive Loss Function

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha;Cho, Dae-Hyeon
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.165-170
    • /
    • 2011
  • Support vector quantile regression(SVQR) is capable of providing a good description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse SVQR to overcome a limitation of SVQR, nonsparsity. The asymmetric e-insensitive loss function is used to efficiently provide sparsity. The experimental results are presented to illustrate the performance of the proposed method by comparing it with nonsparse SVQR.

Quantile Regression with Non-Convex Penalty on High-Dimensions

  • Choi, Ho-Sik;Kim, Yong-Dai;Han, Sang-Tae;Kang, Hyun-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.209-215
    • /
    • 2009
  • In regression problem, the SCAD estimator proposed by Fan and Li (2001), has many desirable property such as continuity, sparsity and unbiasedness. In this paper, we extend SCAD penalized regression framework to quantile regression and hence, we propose new SCAD penalized quantile estimator on high-dimensions and also present an efficient algorithm. From the simulation and real data set, the proposed estimator performs better than quantile regression estimator with $L_1$ norm.

Signal Detection Using Sparse Transformation and Compressed Sensing (Sparse화를 통한 압축센싱에 기반한 신호검출기법에 관한 연구)

  • Lee, Jaeseok;Wang, Jian;Shim, Byonghyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.317-318
    • /
    • 2012
  • Sparse한 신호 복원 방법으로 underdetemined system에서 11-minimization을 이용한 compressive sensing의 연구와 함께, 11-minimization 비해 간단한 greed 알고리듬도 활발히 연구되고 있다. 이에 본 논문은 greed 알고리듬의 대표적인 orthogonal matching pursuit기법에서 iteration 마다 support 선택 개수에 따른 성능을 연구한다. 모의 실험을 통해 OMP의 iteration 단계에서 하나의 support만 선택하는 것보다 다수의 support를 선택하는 것이 더 낮은 sparsity의 신호를 복원할 수 있고 더 낮은 계산량의 이득을 가져오는 것을 확인 할 수 있다.

  • PDF

A Collaborative Recommendation Based on Neural Networks Using the Clustering (클러스터링을 이용한 신경망 기반 협력적 추천)

  • 김은주;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.343-345
    • /
    • 2002
  • 개인화를 위한 협력적 추천의 대표적인 방법인 최근접 이웃 방법은 적용이 쉽지만, 사용자의 선호도 정보가 적을 경우 회소성(sparsity)문제와 사용자 수가 많은 경우 수행 속도가 느려지는 범위성(Scalability)문제 그리고 사용자간의 가중치가 결여되었다는 점에서 추천의 정확성이 떨어진다. 신경망 기반 추천은 자료의 유형에 상관없이 데이터의 처리가 용이하고, 사용자간의 가중치를 학습할 수 있으며, 내용 정보, 인구통계학적 정보 등을 입력 노드에 추가함으로써 희소성 문제를 해결할 수 있으나. 범위성 문제는 존재한다. 따라서 본 논문에서는 최근접 이웃 방법으로 클러스터링 한 유사한 사용자 또는 항목들을 고려한 신경망 기반 추천 방법을 제안하여 범위성 문제를 최소화시킴으로써 추천의 성능을 향상시키고 있다. 제안한 추천 방법의 타당성을 보이기 위해 EachMovie데이터를 이용하여 기존 신경망 추천과 비교 실험하여 성능을 분석한다.

  • PDF

A New Collaborative Filtering Using Associative Relation Clustering (연관 관계 군집에 의한 협력적 여과 방법)

  • 김진현;정경용;김태용;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.331-333
    • /
    • 2002
  • 협력적 여과 방법은 사용자의 평가 데이터를 이용하므로, 항상 초기 평가 문제(First-Rating Problem)와 희박성 문제(Sparsity Problem)가 발생한다. 최근 이러한 문제를 해결하기 위해 많은 연구가 진행되고 있는 데, 본 논문에서는 연관 규칙을 이용하여 이러한 문제를 해결하고자 한다. 사용자의 평가 데이터를 이용하여 아이템간의 연관성을 산출하고, 연관성이 높은 아이템끼리 군집한다. 사용자와 군집간에 피어슨 상관 계수(Pearson Correlation Coefficient)를 이용하여 가중치를 구하고, 이것으로 선호도를 예측한다. 이러한 방법을 기존의 협력적 여과 방법과 함께 속성에 의한 군집 방식과 비교 평가하였다. 또한, 효율적인 군집을 위한 Split Cluster Method를 제안하고, 기존의 트리 방식의 군집과 비교 평가하였다.

  • PDF

Estimation of Sparse Channels in Millimeter-Wave MU-MIMO Systems

  • Hu, Anzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2102-2123
    • /
    • 2016
  • This paper considers a channel estimation scheme for millimeter-wave multiuser multiple-input multiple-output systems. According to the proposed method, parts of the beams are selected and the channel parameters are estimated according to the sparsity of channels and the orthogonality of the beams. Since the beams for each channel become distinct and the signal power increases with the increased number of antennas, the proposed approach is able to achieve good estimation performance. As a result, the sum rate can be increased in comparison with traditional approaches, and channels can be estimated with fewer pilot symbols. Numerical results verify that the proposed approach outperforms traditional approaches in cases with large numbers of antennas.

User Preference Prediction Method Using Associative User Clustering and Bayesian Classification (연관 사용자 군집과 베이지안 분류를 이용한 사용자 선호도 예측 방법)

  • 정경용;김진현;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.109-111
    • /
    • 2001
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법(Nearest-Neighborhood Method)을 사용하고, 피어슨 상관 계수에 의해 사용자의 유사도를 구하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 연관 사용자 군집과 베이지안 분류를 이음한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성(Sparsity)문제를 해결하기 위하여 ARHP 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도출 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다.

  • PDF

Collaborative Recommendations Using Adjusted Product Hierarchy : Methodology and Evaluation

  • Kim Jae Kyeong;Park Su Kyung;Cho Yoon Ho;Choi Il Young
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.320-325
    • /
    • 2002
  • Today many companies offer millions of products to customers. They are faced with a problem to choose particular products . In response to this problem a new marking strategy, recommendation has emerged. Among recommendation technologies collaborative filtering is most preferred. But the performance degrades with the number of customers and products. Namely, collaborative filtering has two major limitations, sparsity and scalability. To overcome these problems we introduced a new recommendation methodology using adjusted product hierarchy, grain. This methodology focuses on dimensionality reduction to improve recommendation quality and uses a marketer's specific knowledge or experience. In addition, it uses a new measure in the neighborhood formation step which is the most important one in recommendation process.

  • PDF

Collaborative Recommendations using Adjusted Product Hierarchy : Methodology and Evaluation (재구성된 제품 계층도를 이용한 협업 추천 방법론 및 그 평가)

  • Cho, Yoon-Ho;Park, Su-Kyung;Ahn, Do-Hyun;Kim, Jae-Kyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.2
    • /
    • pp.59-75
    • /
    • 2004
  • Recommendation is a personalized information filtering technology to help customers find which products they would like to purchase. Collaborative filtering works by matching customer preferences to other customers in making recommendations. But collaborative filtering based recommendations have two major limitations, sparsity and scalability. To overcome these problems we suggest using adjusted product hierarchy, grain. This methodology focuses on dimensionality reduction and uses a marketer's specific knowledge or experience to improve recommendation quality. The qualify of recommendations using each grain is compared with others by several experimentations. Experiments present that the usage of a grain holds the promise of allowing CF-based recommendations to scale to large data sets and at the same time produces better recommendations. In addition. our methodology is proved to save the computation time by 3∼4 times compared with collaborative filtering.

Linear Ordering with Incremental Merging for Circuit Netlist Partitioning (회로 결선도 분할을 위해 점진적 병합을 이용한 선형배열)

  • 성광수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.21-28
    • /
    • 1998
  • In this paper, we propose an efficient linear ordering algorithm, called LIME, for netlist partitioning. LIME incrementally merges two segments which are selected based on the proposed cost function until only one segment remains. The final resultant segment then corresponds to the linear ordering. LIME also runs extremely fast, because it exploits sparsity of netlist. Compared to the earlier work, the proposed algorithm is eight times faster in producing linear ordering and yields an average of 17% improvement for the multi-way scaled cost partitioning.

  • PDF