• Title/Summary/Keyword: Sparsified K-means

Search Result 2, Processing Time 0.013 seconds

Short-term Load Forecasting of Buildings based on Artificial Neural Network and Clustering Technique

  • Ngo, Minh-Duc;Yun, Sang-Yun;Choi, Joon-Ho;Ahn, Seon-Ju
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.672-679
    • /
    • 2018
  • Recently, microgrid (MG) has been proposed as one of the most critical solutions for various energy problems. For the optimal and economic operation of MGs, it is very important to forecast the load profile. However, it is not easy to predict the load accurately since the load in a MG is small and highly variable. In this paper, we propose an artificial neural network (ANN) based method to predict the energy use in campus buildings in short-term time series from one hour up to one week. The proposed method analyzes and extracts the features from the historical data of load and temperature to generate the prediction of future energy consumption in the building based on sparsified K-means. To evaluate the performance of the proposed approach, historical load data in hourly resolution collected from the campus buildings were used. The experimental results show that the proposed approach outperforms the conventional forecasting methods.

Sparsification of Digital Images Using Discrete Rajan Transform

  • Mallikarjuna, Kethepalli;Prasad, Kodati Satya;Subramanyam, M.V.
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.754-764
    • /
    • 2016
  • The exhaustive list of sparsification methods for a digital image suffers from achieving an adequate number of zero and near-zero coefficients. The method proposed in this paper, which is known as the Discrete Rajan Transform Sparsification, overcomes this inadequacy. An attempt has been made to compare the simulation results for benchmark images by various popular, existing techniques and analyzing from different aspects. With the help of Discrete Rajan Transform algorithm, both lossless and lossy sparse representations are obtained. We divided an image into $8{\times}8-sized$ blocks and applied the Discrete Rajan Transform algorithm to it to get a more sparsified spectrum. The image was reconstructed from the transformed output of the Discrete Rajan Transform algorithm with an acceptable peak signal-to-noise ratio. The performance of the Discrete Rajan Transform in providing sparsity was compared with the results provided by the Discrete Fourier Transform, Discrete Cosine Transform, and the Discrete Wavelet Transform by means of the Degree of Sparsity. The simulation results proved that the Discrete Rajan Transform provides better sparsification when compared to other methods.