• 제목/요약/키워드: Sparse-view

검색결과 33건 처리시간 0.031초

Sparse view CT에서 inpainting 방법을 이용한 사이노그램 복원의 영상 재구성 (Image Reconstruction of Sinogram Restoration using Inpainting method in Sparse View CT)

  • 김대홍;백철하
    • 한국방사선학회논문지
    • /
    • 제11권7호
    • /
    • pp.655-661
    • /
    • 2017
  • 방사선 치료 전 환자 위치 확인을 위해 수행하는 콘빔 CT 촬영에서 환자 선량 감소를 위해 Sparse view CT가 사용되고 있다. 본 연구는 시뮬레이션과 실험을 통해 선형보간법과 inpainting 방법을 이용하여 사이노그램의 sparse 데이터 복원하고 평가하는 것이다. 사이노그램 복원은 여러 간격의 각도로 획득된 영상에 적용되었다. 복원된 사이노그램은 역투영재구성법으로 재구성되었고, 그 결과를 평균제곱근오차와 영상의 프로파일로 나타내었다. 결과에 따르면, 평균제곱근오차와 영상 프로파일은 투영 각도와 복원법에 의존하였다. 시뮬레이션과 실험 결과에서 inpainting 복원법은 선형보간법에 비해 사이노그램의 복원 측면에서 개선된 결과를 보여주었다. 따라서, inpainting 방법은 환자 선량을 감소시키면서 영상화질을 유지시키는데 기여할 수 있을 것이다.

Wavelet 변환과 결합한 잔차 학습을 이용한 희박뷰 전산화단층영상의 인공물 감소 (Artifact Reduction in Sparse-view Computed Tomography Image using Residual Learning Combined with Wavelet Transformation)

  • 이승완
    • 한국방사선학회논문지
    • /
    • 제16권3호
    • /
    • pp.295-302
    • /
    • 2022
  • 희박뷰 전산화단층촬영(computed tomography; CT) 영상화 기술은 피폭 방사선량을 감소시킬 수 있을 뿐만 아니라 획득한 투영상의 균일성을 유지하고 잡음을 감소시킬 수 있는 장점이 있다. 하지만 재구성 영상 내 인공물 발생으로 인하여 화질 및 피사체 구조가 왜곡되는 단점이 있다. 본 연구에서는 희박뷰 CT 영상의 인공물 감소를 위해 wavelet 변환과 잔차 학습(residual learning)을 적용한 콘볼루션 신경망(convolutional neural network; CNN) 기반 영상화 모델을 개발하고, 개발한 모델을 통한 희박뷰 CT 영상의 인공물 감소 정도를 정량적으로 분석하였다. CNN은 wavelet 변환 층, 콘볼루션 층 및 역 wavelet 변환 층으로 구성하였으며, 희박뷰 CT 영상과 잔차 영상을 각각 입출력 영상으로 설정하여 영상화 모델 학습을 진행하였다. 영상화 모델 학습을 위해 평균제곱오차(mean squared error; MSE)를 손실함수로, Adam 함수를 최적화 함수로 사용하였다. 학습된 모델을 통해 입력 희박뷰 CT 영상에 대한 예측 잔차 영상을 획득하고, 두 영상간의 감산을 통해 최종 결과 영상을 획득하였다. 또한 최종 결과 영상에 대한 시각적 특성, 최대신호대잡음비(peak signal-to- noise ratio; PSNR) 및 구조적유사성지수(structural similarity; SSIM)를 측정하였다. 연구결과 본 연구에서 개발한 영상화 모델을 통해 희박뷰 CT 영상의 인공물이 효과적으로 제거되며, 공간분해능이 향상되는 결과를 확인하였다. 또한 wavelet 변환과 잔차 학습을 미적용한 영상화 모델에 비해 본 연구에서 개발한 영상화 모델은 결과 영상의 PSNR 및 SSIM을 각각 8.18% 및 19.71% 향상시킬 수 있음을 확인하였다. 따라서 본 연구에서 개발한 영상화 모델을 이용하여 희박뷰 CT 영상의 인공물 제거는 물론 공간분해능 향상 및 정량적 정확도 향상 효과를 획득할 수 있다.

고정형(Stationary-gantry) 희소뷰(Sparse-view) CT 보안검색시스템의 공간분해능 평가 (The Evaluation of Spatial Resolution of Stationary-gantry Sparse-view CT Security-screening System)

  • 김영조;최광윤;정춘호;박형규
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.377-384
    • /
    • 2023
  • In this study, the image quality assessment, especially spatial resolution evaluation, for Sparse-view CT reconstructed images was performed. The main goal of the experiment is to evaluate Modulation Transfer Function by using American Standard Method for Measurement of Computed Tomography System Performance(ASTM E1695-95) which uses the edge test object. To compare with the ASTM method, a different method, the radial-type edge profile, to measure MTF using the edge method also performed. Both approaches were tested on the same image acquired by the stationary-gantry sparse-view CT security-screening system using cylindrical test phantom manufactured in accordance with ANSI 42.45. Both of the spatial resolutions at 10% modulation are 0.195, 0.203lp pixel-1, respectively. The method implemented by ASTM E1695-95 showed higher reliability and had a relatively more accurate spatial resolution result than the radial-type edge profile method.

Sparse 표현을 이용한 X선 흡수 영상 개선 (X-ray Absorptiometry Image Enhancement using Sparse Representation)

  • 김형일;엄원용;노용만
    • 한국멀티미디어학회논문지
    • /
    • 제15권10호
    • /
    • pp.1205-1211
    • /
    • 2012
  • 대사성 골 질환인 골다공증(Osteoporosis)의 조기 진단을 위해 X 선 영상에서 골 밀도를 측정하는 방법이 최근 연구되고 있다. 골 밀도는 X 선 영상에서 뼈가 분리되고, 분리된 영역에서의 픽셀에 의해 BMD가 측정되는데, 개선된 영상에서의 정밀한 뼈 추출이 주요한 요소이므로 X 선 영상의 개선은 골다공증의 조기 진단을 위해 필수적이다. 본 논문에서는 sparse 표현을 도입하여 다중(multiple) 잡음을 갖는 X 선 영상을 개선시키는 방법을 제안한다. 실험을 통해 제안한 방법의 결과가 기존의 방법인 웨이블릿 BayesShrink 잡음 제거 방법 및 일반적 sparse 표현 모델의 잡음 제거 방법의 결과에 비해 개선됨을 CNR(Contrast to Noise Ratio) 및 cut-view를 통해 확인하였다.

반복적 연산으로 얻은 Sparse-view CT 영상에 대한 정량적 평가 (Quantitative Evaluation of Sparse-view CT Images Obtained with Iterative Image Reconstruction Methods)

  • 김혜선;;조민형;이수열
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권3호
    • /
    • pp.257-263
    • /
    • 2011
  • Sparse-view CT imaging is considered to be a solution to reduce x-ray dose of CT. Sparse-view CT imaging may have severe streak artifacts that could compromise the image qualities. We have compared quality of sparseview images reconstructed with two representative iterative reconstruction techniques, SIRT and TV-minimization, in terms of image error and edge preservation. In the comparison study, we have used the Shepp-Logan phantom image and real CT images obtained with a micro-CT. In both phantom image and real CT image tests, TV-minimization technique shows the best performance in error reduction and preserving edges. However, the excessive computation time of TV-minimization is a technical challenge for the practical use.

Sparse-View CT Image Recovery Using Two-Step Iterative Shrinkage-Thresholding Algorithm

  • Chae, Byung Gyu;Lee, Sooyeul
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1251-1258
    • /
    • 2015
  • We investigate an image recovery method for sparse-view computed tomography (CT) using an iterative shrinkage algorithm based on a second-order approach. The two-step iterative shrinkage-thresholding (TwIST) algorithm including a total variation regularization technique is elucidated to be more robust than other first-order methods; it enables a perfect restoration of an original image even if given only a few projection views of a parallel-beam geometry. We find that the incoherency of a projection system matrix in CT geometry sufficiently satisfies the exact reconstruction principle even when the matrix itself has a large condition number. Image reconstruction from fan-beam CT can be well carried out, but the retrieval performance is very low when compared to a parallel-beam geometry. This is considered to be due to the matrix complexity of the projection geometry. We also evaluate the image retrieval performance of the TwIST algorithm -sing measured projection data.

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

주 시각피질에서의 단순세포 수용영역 형성에 대한 성긴 집단부호 모델을 이용한 얼굴이식 (Face recognition using a sparse population coding model for receptive field formation of the simple cells in the primary visual cortex)

  • 김종규;장주석;김영일
    • 전자공학회논문지C
    • /
    • 제34C권10호
    • /
    • pp.43-50
    • /
    • 1997
  • In this paper, we present a method that can recognize face images by use of a sparse population code that is a learning model about a receptive fields of the simple cells in the primary visual cortex. Twenty front-view facial images form twenty persons were used for the training process, and 200 varied facial images, 20 per person, were used for test. The correct recognition rate was 100% for only the front-view test facial images, which include the images either with spectacles or of various expressions, while it was 90% in average for the total input images that include rotated faces. We analyzed the effect of nonlinear functon that determine the sparseness, and compared recognition rate using the sparese population code with that using eigenvectors (eigenfaces), which is compact code that makes contrast with the sparse population code.

  • PDF

다수의 영상 특징점 정합을 위한 비선형 최적화 기법 (Nonlinear Optimization Method for Multiple Image Registration)

  • 안양근;홍지만
    • 방송공학회논문지
    • /
    • 제17권4호
    • /
    • pp.634-639
    • /
    • 2012
  • 본 논문에서는 다수의 영상에서 발견된 특징점의 정확한 정합을 위한 비선형 최적화 기법을 제안한다. 영상에서 발견된 특징점은 선형 해법에 의해 다수의 영상간의 변환을 구할 수 있지만 큰 오차를 수반하게 된다. 이는 영상이 생성되는 모델이 비선형이며, 다수시점간의 운동역시 비선형의 형태를 띄기 때문이다. 하지만 다수의 영상의 비선형 최적화는 일반적인 비선형 해법을 도입하였을 때에는 복잡도가 지수적으로 증가하는 단점이 있다. 본 논문에서는 Levenberg-Marquardt 비선형 최적화 방법의 희박해법(Sparse solution)을 이용하여 다수의 특징점간의 변환을 구하는 방법을 보인다.

희박행렬의 기법을 이용한 대규모 측지망의 조정 (Adjustment Program for Large Sparse Geodetic Networks)

  • 이영진
    • 대한토목학회논문집
    • /
    • 제11권4호
    • /
    • pp.143-150
    • /
    • 1991
  • 이 논문은 대규모인 약 2,000점(미지수 약 4,000개)의 평면 측지망을 조정할 수 있는 프로그램을 개발하는데 목적이 있다. 데이터의 저장 및 관리에는 희박행렬(sparse matrix)의 기법이 사용되었으며, 관측방정식에는 RR(C)U (Row-Wise Representation Complete Unodered)방식, 정규방정식에는 RR(U)U(Row-Wise Representation Upper Unodered) 방식을 도입하고 해법에는 수정 Cholesky법을 적용하였다. PC 386에서 개발된 이 프로그램은 정밀 2차 기준점망인 테스트망에 적용되었으며, 2차원 배열을 사용한 Cholesky 분해법 및 직교분해법을 채용한 프로그램과의 상대적인 비교분석이 이루어졌다. 연구의 결과에서는 희박행렬의 기법이 기억용량의 면에서 뿐만 아니라 처리시간에 있어서도 극히 효과적인 기법임을 보여주고 있다.

  • PDF