방사선 치료 전 환자 위치 확인을 위해 수행하는 콘빔 CT 촬영에서 환자 선량 감소를 위해 Sparse view CT가 사용되고 있다. 본 연구는 시뮬레이션과 실험을 통해 선형보간법과 inpainting 방법을 이용하여 사이노그램의 sparse 데이터 복원하고 평가하는 것이다. 사이노그램 복원은 여러 간격의 각도로 획득된 영상에 적용되었다. 복원된 사이노그램은 역투영재구성법으로 재구성되었고, 그 결과를 평균제곱근오차와 영상의 프로파일로 나타내었다. 결과에 따르면, 평균제곱근오차와 영상 프로파일은 투영 각도와 복원법에 의존하였다. 시뮬레이션과 실험 결과에서 inpainting 복원법은 선형보간법에 비해 사이노그램의 복원 측면에서 개선된 결과를 보여주었다. 따라서, inpainting 방법은 환자 선량을 감소시키면서 영상화질을 유지시키는데 기여할 수 있을 것이다.
희박뷰 전산화단층촬영(computed tomography; CT) 영상화 기술은 피폭 방사선량을 감소시킬 수 있을 뿐만 아니라 획득한 투영상의 균일성을 유지하고 잡음을 감소시킬 수 있는 장점이 있다. 하지만 재구성 영상 내 인공물 발생으로 인하여 화질 및 피사체 구조가 왜곡되는 단점이 있다. 본 연구에서는 희박뷰 CT 영상의 인공물 감소를 위해 wavelet 변환과 잔차 학습(residual learning)을 적용한 콘볼루션 신경망(convolutional neural network; CNN) 기반 영상화 모델을 개발하고, 개발한 모델을 통한 희박뷰 CT 영상의 인공물 감소 정도를 정량적으로 분석하였다. CNN은 wavelet 변환 층, 콘볼루션 층 및 역 wavelet 변환 층으로 구성하였으며, 희박뷰 CT 영상과 잔차 영상을 각각 입출력 영상으로 설정하여 영상화 모델 학습을 진행하였다. 영상화 모델 학습을 위해 평균제곱오차(mean squared error; MSE)를 손실함수로, Adam 함수를 최적화 함수로 사용하였다. 학습된 모델을 통해 입력 희박뷰 CT 영상에 대한 예측 잔차 영상을 획득하고, 두 영상간의 감산을 통해 최종 결과 영상을 획득하였다. 또한 최종 결과 영상에 대한 시각적 특성, 최대신호대잡음비(peak signal-to- noise ratio; PSNR) 및 구조적유사성지수(structural similarity; SSIM)를 측정하였다. 연구결과 본 연구에서 개발한 영상화 모델을 통해 희박뷰 CT 영상의 인공물이 효과적으로 제거되며, 공간분해능이 향상되는 결과를 확인하였다. 또한 wavelet 변환과 잔차 학습을 미적용한 영상화 모델에 비해 본 연구에서 개발한 영상화 모델은 결과 영상의 PSNR 및 SSIM을 각각 8.18% 및 19.71% 향상시킬 수 있음을 확인하였다. 따라서 본 연구에서 개발한 영상화 모델을 이용하여 희박뷰 CT 영상의 인공물 제거는 물론 공간분해능 향상 및 정량적 정확도 향상 효과를 획득할 수 있다.
In this study, the image quality assessment, especially spatial resolution evaluation, for Sparse-view CT reconstructed images was performed. The main goal of the experiment is to evaluate Modulation Transfer Function by using American Standard Method for Measurement of Computed Tomography System Performance(ASTM E1695-95) which uses the edge test object. To compare with the ASTM method, a different method, the radial-type edge profile, to measure MTF using the edge method also performed. Both approaches were tested on the same image acquired by the stationary-gantry sparse-view CT security-screening system using cylindrical test phantom manufactured in accordance with ANSI 42.45. Both of the spatial resolutions at 10% modulation are 0.195, 0.203lp pixel-1, respectively. The method implemented by ASTM E1695-95 showed higher reliability and had a relatively more accurate spatial resolution result than the radial-type edge profile method.
대사성 골 질환인 골다공증(Osteoporosis)의 조기 진단을 위해 X 선 영상에서 골 밀도를 측정하는 방법이 최근 연구되고 있다. 골 밀도는 X 선 영상에서 뼈가 분리되고, 분리된 영역에서의 픽셀에 의해 BMD가 측정되는데, 개선된 영상에서의 정밀한 뼈 추출이 주요한 요소이므로 X 선 영상의 개선은 골다공증의 조기 진단을 위해 필수적이다. 본 논문에서는 sparse 표현을 도입하여 다중(multiple) 잡음을 갖는 X 선 영상을 개선시키는 방법을 제안한다. 실험을 통해 제안한 방법의 결과가 기존의 방법인 웨이블릿 BayesShrink 잡음 제거 방법 및 일반적 sparse 표현 모델의 잡음 제거 방법의 결과에 비해 개선됨을 CNR(Contrast to Noise Ratio) 및 cut-view를 통해 확인하였다.
Sparse-view CT imaging is considered to be a solution to reduce x-ray dose of CT. Sparse-view CT imaging may have severe streak artifacts that could compromise the image qualities. We have compared quality of sparseview images reconstructed with two representative iterative reconstruction techniques, SIRT and TV-minimization, in terms of image error and edge preservation. In the comparison study, we have used the Shepp-Logan phantom image and real CT images obtained with a micro-CT. In both phantom image and real CT image tests, TV-minimization technique shows the best performance in error reduction and preserving edges. However, the excessive computation time of TV-minimization is a technical challenge for the practical use.
We investigate an image recovery method for sparse-view computed tomography (CT) using an iterative shrinkage algorithm based on a second-order approach. The two-step iterative shrinkage-thresholding (TwIST) algorithm including a total variation regularization technique is elucidated to be more robust than other first-order methods; it enables a perfect restoration of an original image even if given only a few projection views of a parallel-beam geometry. We find that the incoherency of a projection system matrix in CT geometry sufficiently satisfies the exact reconstruction principle even when the matrix itself has a large condition number. Image reconstruction from fan-beam CT can be well carried out, but the retrieval performance is very low when compared to a parallel-beam geometry. This is considered to be due to the matrix complexity of the projection geometry. We also evaluate the image retrieval performance of the TwIST algorithm -sing measured projection data.
In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.
In this paper, we present a method that can recognize face images by use of a sparse population code that is a learning model about a receptive fields of the simple cells in the primary visual cortex. Twenty front-view facial images form twenty persons were used for the training process, and 200 varied facial images, 20 per person, were used for test. The correct recognition rate was 100% for only the front-view test facial images, which include the images either with spectacles or of various expressions, while it was 90% in average for the total input images that include rotated faces. We analyzed the effect of nonlinear functon that determine the sparseness, and compared recognition rate using the sparese population code with that using eigenvectors (eigenfaces), which is compact code that makes contrast with the sparse population code.
본 논문에서는 다수의 영상에서 발견된 특징점의 정확한 정합을 위한 비선형 최적화 기법을 제안한다. 영상에서 발견된 특징점은 선형 해법에 의해 다수의 영상간의 변환을 구할 수 있지만 큰 오차를 수반하게 된다. 이는 영상이 생성되는 모델이 비선형이며, 다수시점간의 운동역시 비선형의 형태를 띄기 때문이다. 하지만 다수의 영상의 비선형 최적화는 일반적인 비선형 해법을 도입하였을 때에는 복잡도가 지수적으로 증가하는 단점이 있다. 본 논문에서는 Levenberg-Marquardt 비선형 최적화 방법의 희박해법(Sparse solution)을 이용하여 다수의 특징점간의 변환을 구하는 방법을 보인다.
이 논문은 대규모인 약 2,000점(미지수 약 4,000개)의 평면 측지망을 조정할 수 있는 프로그램을 개발하는데 목적이 있다. 데이터의 저장 및 관리에는 희박행렬(sparse matrix)의 기법이 사용되었으며, 관측방정식에는 RR(C)U (Row-Wise Representation Complete Unodered)방식, 정규방정식에는 RR(U)U(Row-Wise Representation Upper Unodered) 방식을 도입하고 해법에는 수정 Cholesky법을 적용하였다. PC 386에서 개발된 이 프로그램은 정밀 2차 기준점망인 테스트망에 적용되었으며, 2차원 배열을 사용한 Cholesky 분해법 및 직교분해법을 채용한 프로그램과의 상대적인 비교분석이 이루어졌다. 연구의 결과에서는 희박행렬의 기법이 기억용량의 면에서 뿐만 아니라 처리시간에 있어서도 극히 효과적인 기법임을 보여주고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.